104 research outputs found

    Redox potentials of aryl derivatives from hybrid functional based first principles molecular dynamics

    Get PDF
    Acknowledgements We acknowledge the National Science Foundation of China (No. 41222015, 41273074, 41572027 and 21373166), Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (No. 201228), Newton International Fellowship Program and the financial support from the State Key Laboratory at Nanjing University. We are grateful to the High Performance Computing Center of Nanjing University for allowing us to use the IBM Blade cluster system. Open access via RSC Gold for GoldPeer reviewedPublisher PD

    Acidity constants and redox potentials of uranyl ions in hydrothermal solutions

    Get PDF
    Acknowledgements We thank Matthias Krack for supplying us with the pseudopotential and basis sets for U. We acknowledge the National Science Foundation of China (No. 41222015, 41273074, 41572027 and 21373166), Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 201228), Newton International Fellowship Program and the financial support from the State Key Laboratory at Nanjing University. We are grateful to the High Performance Computing Center of Nanjing University for allowing us to use the IBM Blade cluster system. Open access via RSC Gold 4 Gold.Peer reviewedPublisher PD

    Electric-field induced droplet vertical vibration and horizontal motion: Experiments and simulations

    Full text link
    In this work, Electrowetting on Dielectric (EWOD) and electrostatic induction (ESI) are employed to manipulate droplet on the PDMS-ITO substrate. Firstly, we report large vertical vibrations of the droplet, induced by EWOD, within a voltage range of 40 to 260 V. The droplet's transition from a vibrating state to a static equilibrium state are investigated in detail. It is indicated that the contact angle changes synchronously with voltage during the vibration. The electric signal in the circuit is measured to analyze the vibration state that varies with time. By studying the influence of driving voltage on the contact angle and the amplitude in the vibration, it is shown that the saturation voltage of both contact angle and amplitude is about 120 V. The intrinsic connection between contact angle saturation and amplitude saturation is clarified by studying the surface energy of the droplet. A theoretical model is constructed to numerically simulate the vibration morphology and amplitude of the droplet. Secondly, we realize the horizontal motion of droplets by ESI at the voltage less than 1000 V. The charge and electric force on the droplet are numerically calculated. The frictional resistance coefficients of the droplet are determined by the deceleration of the droplet. Under consideration of frictional resistance of the substrate and viscous resistance of the liquid, the motion of the droplet is calculated at 400 V and 1000 V, respectively. This work introduces a new method for manipulating various forms of droplet motion using the single apparatus

    The m6A Reader IGF2BP2 Regulates Macrophage Phenotypic Activation and Inflammatory Diseases by Stabilizing TSC1 and PPARγ.

    Full text link
    peer reviewedPhenotypic polarization of macrophages is regulated by a milieu of cues in the local tissue microenvironment. Currently, little is known about how the intrinsic regulators modulate proinflammatory (M1) versus prohealing (M2) macrophages activation. Here, it is observed that insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 2 (IGF2BP2)-deleted macrophages exhibit enhanced M1 phenotype and promote dextran sulfate sodium induced colitis development. However, the IGF2BP2-/- macrophages are refractory to interleukin-4 (IL-4) induced activation and alleviate cockroach extract induced pulmonary allergic inflammation. Molecular studies indicate that IGF2BP2 switches M1 macrophages to M2 activation by targeting tuberous sclerosis 1 via an N6-methyladenosine (m6A)-dependent manner. Additionally, it is also shown a signal transducer and activators of transcription 6 (STAT6)-high mobility group AT-hook 2-IGF2BP2-peroxisome proliferator activated receptor-γ axis involves in M2 macrophages differentiation. These findings highlight a key role of IGF2BP2 in regulation of macrophages activation and imply a potential therapeutic target of macrophages in the inflammatory diseases

    Acidities of confined water in interlayer space of clay minerals

    Get PDF
    The acid chemistry of confined waters in smectite interlayers have been investigated with first principles molecular dynamics (FPMD) simulations. Aiming at a systematic picture, we establish the model systems to take account of the three possible controlling factors: layer charge densities (0 e, 0.5 e and 1.0 e per cell), layer charge locations (tetrahedral and octahedral) and interlayer counterions (Na+ and Mg2+). For all models, the interlayer structures are characterized in detail. Na+ and Mg2+ show significantly different hydration characteristics: Mg2+ forms a rigid octahedral hydration shell and resides around the midplane, whereas Na+ binds to a basal oxygen atom and forms a very flexible hydration shell, which consists of five waters on average and shows very fast water exchanges. The method of constraint is employed to enforce the water dissociation reactions and the thermodynamic integration approach is used to derive the free-energy values and the acidity constants. Based on the simulations, the following points have been gained. (1) The layer charge is found to be the direct origin of water acidity enhancement in smectites because the neutral pore almost does not have influences on water dissociations but all charged pores do. (2) With a moderate charge density of 0.5 e per cell, the interlayer water shows a pKa value around 11.5. While increasing layer charge density to 1.0 e, no obvious difference is found for the free water molecules. Since 1.0 e is at the upper limit of smectites’ layer charge, it is proposed that the calculated acidity of free water in octahedrally substituted Mg2+-smectite, 11.3, can be taken as the lower limit of acidities of free waters. (3) In octahedrally and tetrahedrally substituted models, the bound waters of Mg2+ show very low pKa values: 10.1 vs 10.4. This evidences that smectites can also promote the dissociations of the coordinated waters of metal cations. The comparison between the two Mg2+-smectites reveals that different layer charge locations do not lead to obvious differences for bound and free water acidities.<br/
    corecore