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Abstract

The acid chemistry of confined waters in smectite interlayers have been investigated with first principles molecular dynam-
ics (FPMD) simulations. Aiming at a systematic picture, we establish the model systems to take account of the three possible
controlling factors: layer charge densities (0 e, 0.5 e and 1.0 e per cell), layer charge locations (tetrahedral and octahedral) and
interlayer counterions (Na* and Mg>"). For all models, the interlayer structures are characterized in detail. Na™ and Mg*"
show significantly different hydration characteristics: Mg>" forms a rigid octahedral hydration shell and resides around the
midplane, whereas Na™ binds to a basal oxygen atom and forms a very flexible hydration shell, which consists of five waters
on average and shows very fast water exchanges. The method of constraint is employed to enforce the water dissociation reac-
tions and the thermodynamic integration approach is used to derive the free-energy values and the acidity constants. Based on
the simulations, the following points have been gained. (1) The layer charge is found to be the direct origin of water acidity
enhancement in smectites because the neutral pore almost does not have influences on water dissociations but all charged
pores do. (2) With a moderate charge density of 0.5 e per cell, the interlayer water shows a pKa value around 11.5. While
increasing layer charge density to 1.0 e, no obvious difference is found for the free water molecules. Since 1.0 e is at the upper
limit of smectites’ layer charge, it is proposed that the calculated acidity of free water in octahedrally substituted Mg *-smec-
tite, 11.3, can be taken as the lower limit of acidities of free waters. (3) In octahedrally and tetrahedrally substituted models,
the bound waters of Mg®" show very low pKa values: 10.1 vs 10.4. This evidences that smectites can also promote the dis-
sociations of the coordinated waters of metal cations. The comparison between the two Mgt -smectites reveals that different
layer charge locations do not lead to obvious differences for bound and free water acidities.
© 2011 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Confined waters are ubiquitous in nature and they play
important roles in geological, biological and technical pro-
cesses (Wang et al., 2003; Brovchenko and Oleinikova,
2008). Water under confinement shows different behaviors
from the bulk due to the influences from the limiting
boundaries and this has received great attention (Dysthe
and Wogelius, 2006; Brovchenko and Oleinikova, 2008).
Smectites, a big family of 2:1 type phyllosilicates, widely
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distribute in soils and sediments and they contain consider-
able confined waters in their interlayer pores (Grim, 1962;
Bergaya et al., 2006). The layering structure of smectites
is formed by stacking along c-axis the “T-O-T” layers,
which consist of an octahedral sheet sandwiched by two tet-
rahedral sheets (Grim, 1962; Brindley and Brown, 1980;
Bleam, 1993). Therefore, 2-D pores are made by the oppo-
site “T-O-T” layers. The isomorphic substitutions in octa-
hedral and/or tetrahedral sheets make the clay frameworks
bear negative charges, which are compensated by interlayer
counterions. Water and organics can enter interlayer re-
gions and this lead to clay swelling phenomena, resulting
in an enlarged interlayer space (e.g. Mooney et al.,
1952a,b; Karaborni et al., 1996). Because of their high
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porosities and high specific surface areas, smectites not only
play key roles in many natural processes but also find wide
applications in engineering and industries (Bergaya et al.,
2006). For example, people have utilized smectites for a
long time in many fields such as environmental engineering,
catalysis, and drug industry. Therefore, the naturally occur-
ring 2-D nanopore architecture of smectites provides a
good model system for studying the confinement effects
for both theoretical and practical reasons. Indeed, people
have been studying the novel properties of confined water
and organics in clay interlayer spaces for decades. For
example, according to numerous experimental and theoret-
ical studies, it has been well recognized that in interlayer
spaces, water can form integer-number molecular layers
and organic ions (e.g. alkylammoniums) can form layering
or paraffin configurations depending on the layer-charge
characteristics (Mooney et al., 1952a,b; Bérend et al.,
1995; Boek et al., 1995; Skipper et al., 1995a,b; Karaborni
et al., 1996; Cases et al., 1997; Chang et al., 1998; Skipper,
1998; Smith, 1998; Sutton and Sposito, 2001; Tambach
et al.,, 2004a,b; Lagaly et al., 2006; Liu and Lu, 2006;
Skipper et al., 2006; Liu et al., 2007, 2008a, 2009; Cygan
et al., 2009; Suter et al., 2009; Anderson et al., 2010).

Acidity is a fundamental aspect of molecular reactivity.
Water molecules in interlayer space of clay minerals can
donate protons and thus serve as the major Lewis acid
sites in the interlayer regions (Bergaya et al., 2006). The
2-D environments alter the properties of confined waters
from many aspects. (1) The hard clay layers physically
limit the mobility of waters on the direction perpendicular
to the basal surfaces. (2) The oxygen atoms on basal sur-
faces interact with interlayer waters via H-bonding. The
clay layer charges polarize the waters to a large extent
and thus impose effects on their interactions with surfaces.
(3) Some counterions form strong chemical bonds with
waters and thus rigid hydration shells. The positive
charges of central cations repel protons of water ligands,
which promote water dissociations. Furthermore, for the
bound waters of cations close to solid surfaces, their pKas
are also influenced by the surfaces, e.g. Criscenti and Sver-
jensky (1999). Based on these reasons, one can expect that
the confined water has different acid-base properties from
the bulk. Previous experimental studies (e.g. Mortland
et al., 1963; Pinnavaia, 1983; Adams and McCabe, 2006)
have indicated that some chemical reaction rates can be
increased in smectites and from these observations, people
have deduced that clay interlayer spaces enhance water
acidity and that eventually accelerates the chemical reac-
tions. However, since the chemical reactions occur in very
narrow clay pores, it is still impossible to do in situ mea-
surements of water acidity constants with modern experi-
mental techniques. Therefore, up to now the absolute
acidities of confined waters and the confinement effects
of clay pores have not been revealed clearly. The lack of
quantitative pictures not only makes it very difficult to un-
cover the acid-base chemistry of the interlayer waters but
also prevents the further developments of practical appli-
cations (Adams and McCabe, 2006).

First principles molecular dynamics (FPMD) technique
(Car and Parrinello, 1985), based on density functional

theory and MD, has been proven a powerful tool to inves-
tigate proton transfer processes in condensed matters. The
transfer of excess protons in liquid water has been studied
with FPMD and the Grotthuss mechanisms are clearly
illustrated (Tuckerman et al., 1997, Marx et al., 1999,
2010; Geissler et al., 2001; Tuckerman et al., 2002; Marx,
2006). By combining FPMD and free-energy calculation,
Sprik (2000) investigated the self-dissociation of liquid
water and predicted the pKw value to be about 13. Since
that encouraging study, the methodology has been applied
on more complicated condensed phase systems, e.g. penta-
oxyphosphoranes (Davies et al., 2002; Doltsinis and Sprik,
2003), Al-aqua and Si(OH)4 (Liu et al., 2010a), and car-
bonic acid conformers (Liu et al., 2010b). Recently, Chura-
kov and Kosakowski (2010) employed FPMD to study the
transfer events of excess protons occurring in the interlayer
regions of smectites and found that similar to the bulk, the
proton transfer processes are barrier free.

In this study, we employed FPMD technique to investi-
gate the acid chemistry of the interlayer water molecules.
The following points have been focused on: (1) the origin
of promotion effects of clay interlayers, (2) the influences
of layer charge densities and locations (i.e. tetrahedral
and octahedral), and (3) the effects of counterion species.
For these aims, both the charged and neutral clay pores
are built for the purpose of comparisons. For the charged
models, Na® and Mg®*, the commonly occurring cations
in clays, are taken as the interlayer counterions, which cor-
respond to the low and high layer charge densities of clays,
respectively. For Mg?'-smectite models, the tetrahedral
and octahedral substitutions are both considered. By using
FPMD simulations, the interlayer microscopic structures of
the models are characterized in detail. Then, the FPMD
simulations combined with the method of constraint are
carried out to investigate the dissociation mechanisms of
the interlayer waters and thus, their acidity constants are
derived. According to the detailed analyses, we theorize
the clear picture about the effects of clay pores on acidities
of water molecules.

2. METHODOLOGY
2.1. Systems

The clay framework model was derived from the report
of Viani et al. (2002), which was also used in our previous
simulations (Liu et al., 2008b; 2010a,b,c). The unit cell for-
mula is X+(]2_a_b)[siaAlg_a] [Al,Mgy,]020(OH),, where X,
Alg_,and Mgy, denote the monovalent counterion, isomor-
phic substitutions in tetrahedral and octahedral sheets,
respectively. The crystallographic parameters are: a =
518 A,h=898 A, c=10A and « = = y = 90°. The sim-
ulated systems (Fig. 1) consist of two unit cells (2a x b X ¢).
For the neutral model, there is no isomorphic substitution
in clay layers. For Na'-smectite, one Mg replaces one Al
in the octahedral sheet and a Na' ion is introduced into
the interlayer region. For Mg?"-smectites, two atoms are
replaced in either the tetrahedral or the octahedral layer
to give the framework a —2 charge and this charge is com-
pensated by introducing one Mg>* into the interlayer. For
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Fig. 1. Snapshots of (A) Na'-smectite and (B) Mg*"-smectite
(tetrahedral substitution). In the pictures, Na = purple, O = red,
H = white, Si= yellow, Al =light purple and Mg = green. (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

the tetrahedral one (named as Mg®>"-Tetra), two Al atoms
replace two Si in the upper and the lower T-sheets, respec-
tively and for the octahedral one (Mg?t-Octa), two Mg
atoms replace two Al which are not linked via an O.

Previous experimental and simulation studies have
proved that Na™ and Mg smectites can swell to 1 and 2
layer hydrates and in water rich environments, the 2-layer
states are thermodynamically favorable over the 1-layer
states (Brindley and Brown, 1980; Bérend et al., 1995; Cases
et al., 1997; Whitley and Smith, 2004; Liu and Lu, 2006).
Therefore, the models containing two water layers are fo-
cused on in this study. Based on our previous studies (Liu
and Lu, 2006; Liu et al., 2008a), the 2-layer hydrate has
about 10 water molecules per unit cell. With (4a x 2b x 2c¢)
models, we carry out NPT MD simulations under ambient
conditions to determine the basal spacing values. The sim-
ulations are performed by using LAMMPS package
(Plimpton, 1995) and the CLAYFF force field (Cygan
et al., 2004). The results show that for both Na* and
Mg smectites models, the basal spacing values are around
15.0 A. This value agrees well with previous experimental
measurements (e.g. Brindley and Brown, 1980; Bérend
et al., 1995; Cases et al., 1997). Therefore, the basal spacing
and the final configurations are used to generate initial con-
figurations for the following FPMD simulations.

For the systems of Na and Mg®>" in liquid water, the
simulation cell is a periodically repeated cubic box of side
length 10.5 A. The cation-(H,0)s complexes are placed at
the center of the box and 32 water molecules are inserted
around (about 1.4 mol/L), which approximately reproduces
the density of water under ambient condition. For these
charged systems, neutralizing background charges are
added in the simulations (Marx and Hutter, 2009).

2.2. Car-Parrinello MD

The electronic structures are calculated by using density
functional theory with the BLYP functional (Becke, 1988;
Lee et al., 1988), which can accurately describe the behav-
iors of water and proton (e.g. Laasonen et al., 1993; Sprik
et al., 1996; Marx et al., 1999, 2010; Marx, 2006). The

norm-conserving  Martins—Trouillier — pseudopotentials
(Troullier and Martins, 1991) with the Kleinman-Bylander
scheme (Kleinman and Bylander, 1982) are used to describe
the interactions of the valence electrons and the core states.
The orbitals are expanded in plane wave basis sets with a
kinetic energy cutoff of 70 Ry.

All FPMD simulations are performed with the CPMD
package (CPMD version 3.11.2) (Car and Parrinello,
1985). All hydrogen atoms are assigned a mass of deute-
rium. The fictitious electronic mass is set to 800 a.u. and
the equation of motion is integrated with a time step of
0.144 fs, which maintains the adiabatic conditions of
CPMD. The temperature is controlled at 300 K with the
Nosé-Hoover chain thermostat. For the constrained simu-
lation, MD is carried out with the reaction coordinate fixed
at the desired value. Each unconstrained/constrained MD
trajectory includes a production step of 12 ps and a prior
equilibration run of at least 3 ps. The statistics are collected
every six steps for all simulations.

2.3. pKa calculation and method of constraint

For the dissociation reaction of liquid water H,O —
H'" 4+ OH™ with a free energy change AF, the acidity of
the water can be calculated with,

AF

KA = T In(10) (m)

Here kg and T are Boltzmann constant and temperature,
respectively.

The dissociation reaction event is enforced to happen
with the method of constraint and the relative free energies
(AF) are calculated by integrating the averaged force (f)
along the reaction coordinates via the thermodynamic inte-
gration relation (Carter et al., 1989; Sprik and Ciccotti,
1998),

o
aFQ) =~ [ dg's(@) )
[

Here the coordination number (CN) of the reactive hy-
droxyl oxygen is selected as the reaction coordinate (Q) to
represent the reaction progress.

In the simulations, the CN of the reactive oxygen (O")
runs over all water hydrogen in the model,

mi = 8w, ~ ro) (3)

The function S(r) is used to weight the contributions of
all water hydrogen with a suitable distance dependent func-
tion. In this study we employ the Fermi function (Sprik,
1998, 2000),

S() 1

- exp[r(r —re)] + 1 “)

where x and r. denote the inversion of the width and the
cutoff and the hydrogen atoms outside the interval of
r. —k <r<r.+x are effectively counted as 1 or 0. In
our calculations, 0.10 A and 1.35 A are used for x and Fe»
respectively.
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As mentioned above, all hydrogen has a mass of D for
computation efficiency. Because the nuclei are treated as
classical particles in the used CPMD technique, the quan-
tum effects of hydrogen cannot be captured. Therefore,
the subtle acidity differences of D and H (pKw (D,0) —
pKw(H>0) =~ 0.7 (Wynne-Jones, 1936)) would not be dis-
tinguished. For the purpose of clarity, we use H>O instead
of D,O in the text.

Within constrained FPMD simulation times (~15 ps),
the mean forces can reach reasonable convergences within
1.8 kcal/mol. (see the electronic annex). This sets an upper
limit of 1.1 pKa units to the statistical uncertainty in our
acidity calculations.

3. RESULTS AND DISCUSSIONS
3.1. Interlayer structures

The density profiles of interlayer atomic species are de-
rived to characterize the interlayer structures (Fig. 2). On
these plots, the middle planes of the pores are taken as the ori-
gins and the distances (—4 to 4 A) approximately correspond
to the distances between the basal oxygen planes above and
below the origins because the pore widths are around 8 A.
All density curves of water oxygen show two well separated
peaks, which indicates the water molecules form two layers.
On all plots, the density curves of water hydrogen represent
considerable distributions in the middle, indicating that some
H-bonds exist between the lower and upper water layers. For
the neutral pore, the hydrogen mainly distributes from —2.5
to 2.5 A on the distance axis, i.e. they are mostly over 1.5 A
away from the clay surfaces. In contrast, for the three
charged models, hydrogen represents considerable distribu-
tions in the ranges <1.5 A away from the surfaces. This

0.20
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e
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0.054
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4 3 2 4 0 1 2 3
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—O0
—Mg

2+

2

=

«
L

Density distribution (A®)
o o
= st
i b

4 3 2 4 0 1 2 3
Distance (A)

obvious difference is caused by the layer charges, which
encourages H-bonding between water hydrogen and surface
oxygen atoms.

For Na+—smectitee, the cation shows a distribution
peaked at about 1.0 A (Fig. 2B), indicating that Na™ cat-
ions do not favor staying around the midplane. As revealed
by the radial distribution function curve of cation-water
oxygen (Fig. 3A), the first peak ranges from 2.0 to 3.0 A,
which amounts to about five on the accumulated coordina-
tion number profile. Fig. 4A illustrates a representative
snapshot, which shows that Na™ binds to one basal oxygen
and five water molecules. This observation is consistent
with a previous CPMD simulation report (Suter et al.,
2008). In that study, they found that the most stable com-
plex has a very similar configuration as shown in Fig. 4A,
which is of a lower free-energy than that one located at
the exact midplane.

For both Mg?"-smectites, the cations reside around the
midplanes during the simulations (Fig. 2C and D). Mg>"-O
RDF curves (Fig. 3B and C) show very sharp first peaks
ranging 1.9-2.5 A and the accumulated coordination num-
ber curves indicate that Mg?" cations form very structured
first hydration shells consisting of six waters (Callahan
et al., 2010). This is consistent with the previous classical
MD study of Mg?" cations in clay interlayers (Greathouse
et al., 2000). The derived snapshot (Fig. 4B) illustrates the
octahedral hydration shell.

In the simulation of Nat-smectite, it is found that the
hydration shell of Na™ is very flexible and the exchange be-
tween the 1st shell and the other waters happens quite fre-
quently. Fig. 5 plots the trajectories of distances between
the cations and the leaving waters for in liquid water and
in smectite interlayer. One can see that for both cases the
first shell waters leave on a picosecond timescale, which
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Fig. 2. Density distributions of interlayer species.
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Fig. 3. RDFs (radial distribution functions) and ACNs (accumulated coordination numbers) of water oxygen around metal cations in the

interlayer spaces.

Fig. 4. Coordination structures of counterions in (A) Na*-smectite
and (B) Mg?"-smectite (tetrahedral substitution). For the purpose of
clarity, the other water molecules are removed. In the pictures, Na =
purple, O =red, H = white, Si=yellow, Al=light purple and
Mg = green. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

A: Na'-water

Distance (A)

0 5 10 15 20 25
Time (ps)

indicates that the interaction between Na™ and water is rel-
atively weak. In contrast, the hydration shell of Mg>" is
very rigid and no exchange event has been observed during
the simulations.

3.2. Acid chemistry

3.2.1. pKas of Na*-aqua and Mg’ *-aqua in liquid water

As shown in Fig. 6, the calculated free energy change for
the dissociation of a water molecule bound to Mg*" in li-
quid water is about 16 kcal/mol and the pKa is about
11.8. This result coincides well with the experimental mea-
surement, 11.4 (Westermann et al., 1986). In a previous
AIMD study of Mg>" (Bernasconi et al., 2006), 11.6 was
obtained with a slightly different post-processing approach.
For Na% in water, due to the water exchange as discussed
above, the focused water molecule would quickly get off
from the first shell in the simulation and therefore, the final

B: Na'-Clay

Distance (A)
i

w\Ni N
ikl
mﬂ vivw

0 5 10 15 20 25 30
Time (ps)

nipt
, Sk

Fig. 5. The trajectories of distances between Na™ and the leaving water molecules in the simulations: (A) Na™ in liquid water and (B) Na™ in

interlayer space of smectite.
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result is actually equal to the pKw, 13.0 (Sprik, 2000). This
also explains why Na™ hardly influences the dissociations of

water molecules (Westermann et al., 1986).

3.2.2. General pictures of confined water dissociation

For the neutral model and Na'-smectite, all waters are
equal and thus the dissociating water molecules are selected
randomly. For the two Mg2+-smectites, one bound water
(i.e. one in Mg(H,0)¢>") and one free water are selected

to do the dissociation simulations, respectively.

To show the water dissociating process, the simulations
of bound water in Mg>*-Octa are taken as an illustrative
example (Fig. 7). On the initial steps (CN = 1.8, Fig. 7A),
the breaking O-H bond is stretched a little from the equilib-
rium and the H-bond between the leaving proton and the

Fig. 7. Snapshots derived from the dissociation simulations of 1st-shell water in Mg>*-smectite (octahedral substitution). For the purpose of
clarity, the other water molecules are removed. (A) CN = 1.8, (B) CN = 1.5, and (C) CN = 1.2. In the pictures, O =red, H = white,
Si = yellow, Al = light purple and Mg = green. The white numbers denote the bonds between the leaving proton and the accepting oxygen,
the blue numbers indicate the bonds between the leaving proton and the donating oxygen. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Table 1
Calculated pKa values of confined waters. The values for bulk
water, Na-aqua, and Mg?"-aqua are included for comparison.

System pKa
Bulk water/Na™ 13.0
Mgt 11.8
Neutral model 12.6
Na'-smectite 11.5
Mg”>"-Octa Bound water 10.1

Free water 11.3
Mg**-Tetra Bound water 10.4

Free water 12.1

acceptor water would become stronger. As the CN
decreases to 1.5, the leaving proton binds to the acceptor
water and the hydronium ion has formed (Fig. 7B). At
CN = 1.2, the Grotthuss mechanism is initiated (Marx,
2006) and the proton freely diffuses to other water mole-
cules (Fig. 7C). It can be seen that after hydrolysis,
Mg®>"-0 bond length decreases to around 2.0 A from the
initial 2.12 A (Fig. 7C).

The integrated free-energy curves are shown in Fig. 8
and the calculated pKa values are collected in Table 1.

3.2.3. pKas of confined waters

The calculated pKa in the neutral pore is around 12.6.
This is quite close to the BLYP result of the liquid water,
13.0 (Sprik, 2000). In contrast, for all the other interlayer
waters, the pKa values are obviously smaller than the bulk
value. This clearly reveals that the enhancement of water
dissociation mainly stems from the layer charges whereas
the geometrical constraint effect is trivial.

The pKa value of the water in Na‘-smectite is 11.5. That
is near the acidity of the free water in the octahedrally-
substituted Mg?"-smectite, 11.3. Such acidity should be
considered significant, since they are close to the pKa of
Mg?*-aqua and Mg?" has proven an active role of acidic
catalyst in many (bio)chemical reactions (Cowan, 1995; Si-
gel and Pyle, 2007). Furthermore, it can be deduced that
increasing the layer charge density from 0.5 ¢ to 1.0 e does
not cause obvious effect on the acidity of free waters. 1 e per
unit cell is almost the upper limit of smectites (Bergaya
et al.,, 2006) and therefore, the value derived here (i.e.
11.3) can be considered to be the lower limit of free waters’
acidity in clay pores.

The waters coordinated by Mg®" in both smectites repre-
sent significantly low pKa values, 10.1 and 10.4. Therefore,
one can see that for both Mg?"-smectites, the pKas of coordi-
nated and free waters agree with their respective counterpart
values within 1 pKa unit. This strongly suggests that
substitution positions do not lead to obvious differences. By
comparing the values of coordinated waters with the pKa of
Mg®"-aqua in the bulk, it can be concluded that clay layers
can obviously promote the dissociation of bound waters.

Like MgH, other divalent cations such as Ca®", Sr**
have very high hydration energies (over 1000 kJ/mol) and
in interlayer regions of smectites they also prefer forming
outer-sphere complexes (e.g. Chavez-Pdez et al., 2001;
Whitley and Smith, 2004). Therefore, the findings derived

for Mg”>" also hold true for those cations. Given that more
acidic trivalent cations (e.g. AI**, Fe*™) are present in inter-
layers, their acidities can also be enhanced by clay frame-
works. That would make the interlayer region a much
more acidic environment than the bulk and therefore, many
geochemical/biochemical processes can be catalyzed there.

4. CONCLUSIONS

In this study, the acid chemistry of confined waters in
interlayer space of smectites is investigated with FPMD
simulations. The method of constraint is employed to en-
force the reactions and thermodynamic integration is used
to derive the free-energy changes and thus the acidity con-
stants. Three possible controlling factors have been taken
into account: layer charge densities (0 e, 0.5¢ and 1.0¢
per unit cell), layer charge locations (tetrahedral vs octahe-
dral) and interlayer counterions (Na™ vs Mg?"). According
to detailed analyses, the following points have been
achieved.

(1) Na* and Mg?" cations show significantly different
complexing characteristics in clay pores. Mg®" forms
a very rigid octahedral hydration shell and behaves as
outer-sphere complexes. Na™ binds to one basal oxy-
gen atom and forms a very flexible hydration shell of
five waters on average, which shows very fast water
exchanges. This explains why Mg?™ promotes water
dissociation obviously but Na™ almost does not.

(2) The neutral clay framework does not enhance water
dissociations whereas all charged do. This evidences
that layer charge is the direct origin for enhancing
the acidity of interlayer water.

(3) With a moderate charge density 0.5 e per unit cell, the
interlayer water shows a pKa of 11.5 in smectites.
Increasing layer charge density to 1.0 e does not lead
to obvious further enhancement on the acidities of
the free water molecules. Because 1.0 e is at the upper
limit of charge densities of smectites, we propose that
the acidity calculated here (11.3) can be viewed as the
lower limit of the acidities of free interlayer waters.

(4) The 1st-shell waters of Mg>" show very low pKa val-
ues (10.1 vs 10.4) for octahedrally and tetrahedrally
substituted models. By comparing them with the bulk
value of Mg”—aqua, 11.8, it is clear that clay frame-
works can also enhance acidities of the cation-bound
waters. Because many highly acidic cations (e.g.
Mg?", Ca®t, AT, Fe*™) occur as counterions in nat-
ure, their presence eventually makes the interlayer
region a chemical environment of high acid activity.
Furthermore, the results of the two Mg>t-models
reveals that layer charge locations show trivial influ-
ences on the acidities of both free and coordinated
waters.
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