10 research outputs found

    Comprehensive regulatory networks for tomato organ development based on the genome and RNAome of MicroTom tomato

    Get PDF
    MicroTom has a short growth cycle and high transformation efficiency, and is a prospective model plant for studying organ development, metabolism, and plant-microbe interactions. Here, with a newly assembled reference genome for this tomato cultivar and abundant RNA-seq data derived from tissues of different organs/developmental stages/treatments, we constructed multiple gene co-expression networks, which will provide valuable clues for the identification of important genes involved in diverse regulatory pathways during plant growth, e.g. arbuscular mycorrhizal symbiosis and fruit development. Additionally, non-coding RNAs, including miRNAs, lncRNAs, and circRNAs were also identified, together with their potential targets. Interacting networks between different types of non-coding RNAs (miRNA-lncRNA), and non-coding RNAs and genes (miRNA-mRNA and lncRNA-mRNA) were constructed as well. Our results and data will provide valuable information for the study of organ differentiation and development of this important fruit. Lastly, we established a database (http://eplant.njau.edu.cn/microTomBase/) with genomic and transcriptomic data, as well as details of gene co-expression and interacting networks on MicroTom, and this database should be of great value to those who want to adopt MicroTom as a model plant for research.The Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China, the Outstanding Young Teacher of the QingLan Project of Jiangsu Province, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (833522) and from Ghent University (Methusalem funding).https://academic.oup.com/hram2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-15:Life on lan

    A superconducting nanowire photon number resolving four-quadrant detector-based Gigabit deep-space laser communication receiver prototype

    Full text link
    Deep space explorations require transferring huge amounts of data quickly from very distant targets. Laser communication is a promising technology that can offer a data rate of magnitude faster than conventional microwave communication due to the fundamentally narrow divergence of light. This study demonstrated a photon-sensitive receiver prototype with over Gigabit data rate, immunity to strong background photon noise, and simultaneous tracking ability. The advantages are inherited from a joint-optimized superconducting nanowire single-photon detector (SNSPD) array, designed into a four-quadrant structure with each quadrant capable of resolving six photons. Installed in a free-space coupled and low-vibration cryostat, the system detection efficiency reached 72.7%, the detector efficiency was 97.5%, and the total photon counting rate was 1.6 Gcps. Additionally, communication performance was tested for pulse position modulation (PPM) format. A series of signal processing methods were introduced to maximize the performance of the forward error correction (FEC) code. Consequently, the receiver exhibits a faster data rate and better sensitivity by about twofold (1.76 photons/bit at 800 Mbps and 3.40 photons/bit at 1.2 Gbps) compared to previously reported results (3.18 photon/bit at 622 Mbps for the Lunar Laser Communication Demonstration). Furthermore, communications in strong background noise and with simultaneous tracking ability were demonstrated aimed at the challenges of daylight operation and accurate tracking of dim beacon light in deep space scenarios

    The Impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 Polymorphisms on Metformin Therapeutic Efficacy in Chinese Type 2 Diabetes Patients

    No full text
    Background. We aimed to investigate the distributive characteristics of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms and their influence on metformin efficacy in Chinese T2DM patients. Methods. The distributions of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms were determined in 267 T2DM patients and 182 healthy subjects. Subsequently, 53 newly diagnosed patients who received metformin monotherapy were recruited to evaluate metformin efficacy. Results. No significant difference was found between T2DM patients and healthy subjects in SLC22A1 rs594709 and SLC47A1 rs2289669 allele frequencies and genotype frequencies. After metformin treatment, SLC22A1 rs594709 GG genotype patients showed a higher increase in FINS (p=0.015) and decrease in HOMA-IS (p=0.001) and QUICKI (p=0.002) than A allele carriers. SLC47A1 rs2289669 GG genotype patients had a higher decrease in TChol (p=0.030) and LDL-C (p=0.049) than A allele carriers. Among SLC22A1 rs594709 AA genotype, patients with SLC47A1 rs2289669 AA genotype showed a higher decrease in FBG (p=0.015), PINS (p=0.041), and HOMA-IR (p=0.014) than G allele carriers. However, among SLC22A1 rs594709 G allele carriers, SLC47A1 rs2289669 AA genotype patients showed a higher decrease in TChol (p=0.013) than G allele carriers. Conclusion. Our data suggest that SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms may influence metformin efficacy together in Chinese T2DM patients

    Comprehensive regulatory networks for tomato organ development based on the genome and RNAome of microTom tomato

    No full text
    MicroTom tomato has a short growth cycle and high transformation efficiency, and is a prospective model plant for studying organ development, metabolism, and plant-microbe interactions. Here, with a newly assembled reference genome for this tomato cultivar and abundant RNA-seq data derived from tissues of different organs/developmental stages/treatments, we constructed multiple gene co-expression networks, which will provide valuable clues for the identification of important genes involved in diverse regulatory pathways during plant growth, e.g., arbuscular mycorrhizal symbiosis and fruit development. Additionally, non-coding RNAs, including miRNAs, lncRNAs and circRNAs were also identified, together with their potential targets. Interacting networks between different types of non-coding RNAs (miRNA-lncRNA), and non-coding RNAs and genes (miRNA-mRNA and lncRNA-mRNA) were constructed as well. Our results and data will provide valuable information for the study of organ differentiation and development of this important fruit. Lastly, we established a database (http://eplant.njau.edu.cn/microTomBase/) with genomic and transcriptomic data, as well as details of gene co-expression and interacting networks on microTom, and this database should be of great value to those who wants to adopt microTom as a model plant for research

    A compact multi-pixel superconducting nanowire single-photon detector array supporting gigabit space-to-ground communications

    No full text
    Abstract Classical and quantum space-to-ground communications necessitate highly sensitive receivers capable of extracting information from modulated photons to extend the communication distance from near-earth orbits to deep space explorations. To achieve gigabit data rates while mitigating strong background noise photons and beam drift in a highly attenuated free-space channel, a comprehensive design of a multi-functional detector is indispensable. In this study, we present an innovative compact multi-pixel superconducting nanowire single-photon detector array that integrates near-unity detection efficiency (91.6%), high photon counting rate (1.61 Gcps), large dynamic range for resolving different photon numbers (1–24), and four-quadrant position sensing function all within one device. Furthermore, we have constructed a communication testbed to validate the advantages offered by such an architecture. Through 8-PPM (pulse position modulation) format communication experiments, we have achieved an impressive maximum data rate of 1.5 Gbps, demonstrating sensitivities surpassing previous benchmarks at respective speeds. By incorporating photon number information into error correction codes, the receiver can tolerate maximum background noise levels equivalent to 0.8 photons/slot at a data rate of 120 Mbps—showcasing a great potential for daylight operation scenarios. Additionally, preliminary beam tracking tests were conducted through open-loop scanning techniques, which revealed clear quantitative dependence indicating sensitivity variations based on beam location. Based on the device characterizations and communication results, we anticipate that this device architecture, along with its corresponding signal processing and coding techniques, will be applicable in future space-to-ground communication tasks

    Design, Synthesis, and Structure–Activity Relationship of Novel LSD1 Inhibitors Based on Pyrimidine–Thiourea Hybrids As Potent, Orally Active Antitumor Agents

    No full text
    Histone lysine specific demethylase 1 (LSD1) was reported to be overexpressed in several human cancers and recognized as a promising anticancer drug target. In the current study, we designed and synthesized a novel series of pyrimidine–thiourea hybrids and evaluated their potential LSD1 inhibitory effect. One of the compounds, <b>6b</b>, containing a terminal alkyne appendage, was shown to be the most potent and selective LSD1 inhibitor in vitro and exhibited strong cytotoxicity against LSD1 overexpressed gastric cancer cells. Compound <b>6b</b> also showed marked inhibition of cell migration and invasion as well as significant in vivo tumor suppressing and antimetastasis role, without significant side effects by oral administration. Our findings indicate that the pyrimidine–thiourea-based LSD1 inactivator may serve as a leading compound targeting LSD1 overexpressed cancers
    corecore