103 research outputs found

    Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2

    Full text link
    The ternary iron arsenide BaFe2As2 becomes superconducting by hole doping, which was achieved by partial substitution of the barium site with potassium. We have discovered bulk superconductivity up to Tc = 38 K in (Ba1-xKx)Fe2As2 with x = 0.4. The parent compound BaFe2As2 as well as KFe2As2 both crystallize in the tetragonal ThCr2Si2-type structure, which consists of (FeAs)- iron arsenide layers separated by barium or potassium ions. BaFe2As2 is a poor metal and exhibits a SDW anomaly at 140 K. By substituting Ba2+ for K+ ions we have introduced holes in the (FeAs)- layers, which suppress the SDW anomaly and induce superconductivity. This scenario is very similar to the recently discovered arsenide-oxide superconductors. The Tc of 38 K in (Ba1-xKx)Fe2As2 is the highest observed critical temperature in hole doped iron arsenide superconductors so far. Therefore, we were able to expand this class of superconductors by oxygen-free compounds with the ThCr2Si2-type structure. Our results suggest, that superconductivity in these systems essentially evolves from the (FeAs)- layers and may occur in other related compounds.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Fermi surfaces and quasi-particle band dispersions of the iron pnictides superconductor KFe2As2 observed by angle-resolved photoemission spectroscopy

    Full text link
    We have performed an angle-resolved photoemission study of the iron pnictide superconductor KFe2As2 with Tc 4 K. Most of the observed Fermi surfaces show almost two-dimensional shapes, while one of the quasi-particle bands near the Fermi level has a strong dispersion along the kz direction, consistent with the result of a band-structure calculation. However, hole Fermi surfaces \alpha and \zeta are smaller than those predicted by the calculation while other Fermi surfaces are larger. These observations are consistent with the result of a de Haas-van Alphen study and a theoretical prediction on inter-band scattering, possibly indicating many body effects on the electronic structure.Comment: 4 pages, 5 figures. Proceeding of the 9th International Conference on Spectroscopies in Novel Superconductors (SNS2010

    Superconductivity up to 37 K in (A1-xSrx)Fe2As2 with A=K and Cs

    Full text link
    A new hight Tc Fe-based compound system, AFe2As2 with A = K, Cs, K/Sr and Cs/Sr has been found. Through electron-doping, Tc of the A = K and Cs compounds rises to ~37 K, and finally enter a spin-density-wave state (SDW) through further electron doping with Sr. The observation demonstrates the crucial role of the (FeAs)-layers in the superconductivity in the Fe-based layered system and the special feature of elemental A-layers in this complex chemical system may provide new avenues to superconductivity at a higher Tc.Comment: minor corrections, references completed, figures revise

    Identification of hypertensive patients with dominant affective temperaments might improve the psychopathological and cardiovascular risk stratification: a pilot, case-control study.

    Get PDF
    BACKGROUND: Although mood disorders and cardiovascular diseases have widely studied psychosomatic connections, data concerning the influence of the psychopathologically important affective temperaments in hypertension are scarce. To define a possibly higher cardiovascular risk subpopulation we investigated in well-treated hypertensive patients with dominant affective temperaments (DOM) and in well-treated hypertensive patients without dominant temperaments the level of depression and anxiety, arterial stiffness and serum Brain-derived Neurotrophic Factor (seBDNF). METHODS: 175 hypertensive patients, free of the history of psychiatric diseases, completed the TEMPS-A, Beck Depression Inventory and Hamilton Anxiety Scale questionnaires in two primary care practices. Of those 175 patients, 24 DOM patients and 24 hypertensive controls (matched in age, sex and the presence of diabetes) were selected for measurements of arterial stiffness and seBDNF level. RESULTS: Beck and Hamilton scores in DOM patients were higher compared with controls. Pulse wave velocity and augmentation index did not differ between the groups while in the DOM patients decreased brachial systolic and diastolic and central diastolic blood pressures were found compared with controls. SeBDNF was lower in the DOM group than in the controls (22.4 +/- 7.2 vs. 27.3 +/- 7.8 ng/mL, p < 0.05). CONCLUSIONS: Although similar arterial stiffness parameters were found in DOM patients, their increased depression and anxiety scores, the decreased brachial and central diastolic blood pressures as well as the decreased seBDNF might refer to their higher vulnerability regarding the development not only of major mood disorders, but also of cardiovascular complications. These data suggest that the evaluation of affective temperaments should get more attention both with regard to psychopathology and cardiovascular health management

    Feshbach resonances and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors

    Full text link
    High Tc superconductivity in FeAs-based multilayers (pnictides), evading temperature decoherence effects in a quantum condensate, is assigned to a Feshbach resonance (called also shape resonance) in the exchange-like interband pairing. The resonance is switched on by tuning the chemical potential at an electronic topological transition (ETT) near a band edge, where the Fermi surface topology of one of the subbands changes from 1D to 2D topology. We show that the tuning is realized by changing i) the misfit strain between the superconducting planes and the spacers ii) the charge density and iii) the disorder. The system is at the verge of a catastrophe i.e. near a structural and magnetic phase transition associated with the stripes (analogous to the 1/8 stripe phase in cuprates) order to disorder phase transition. Fine tuning of both the chemical potential and the disorder pushes the critical temperature Ts of this phase transition to zero giving a quantum critical point. Here the quantum lattice and magnetic fluctuations promote the Feshbach resonance of the exchange-like anisotropic pairing. This superconducting phase that resists to the attacks of temperature is shown to be controlled by the interplay of the hopping energy between stripes and the quantum fluctuations. The superconducting gaps in the multiple Fermi surface spots reported by the recent ARPES experiment of D. V. Evtushinsky et al. arXiv:0809.4455 are shown to support the Feshbach scenario.Comment: 31 pages, 7 figure

    Cystatin A, a Potential Common Link for Mutant Myocilin Causative Glaucoma

    Get PDF
    Myocilin (MYOC) is a 504 aa secreted glycoprotein induced by stress factors in the trabecular meshwork tissue of the eye, where it was discovered. Mutations in MYOC are linked to glaucoma. The glaucoma phenotype of each of the different MYOC mutation varies, but all of them cause elevated intraocular pressure (IOP). In cells, forty percent of wild-type MYOC is cleaved by calpain II, a cysteine protease. This proteolytic process is inhibited by MYOC mutants. In this study, we investigated the molecular mechanisms by which MYOC mutants cause glaucoma. We constructed adenoviral vectors with variants Q368X, R342K, D380N, K423E, and overexpressed them in human trabecular meshwork cells. We analyzed expression profiles with Affymetrix U133Plus2 GeneChips using wild-type and null viruses as controls. Analysis of trabecular meshwork relevant mechanisms showed that the unfolded protein response (UPR) was the most affected. Search for individual candidate genes revealed that genes that have been historically connected to trabecular meshwork physiology and pathology were altered by the MYOC mutants. Some of those had known MYOC associations (MMP1, PDIA4, CALR, SFPR1) while others did not (EDN1, MGP, IGF1, TAC1). Some, were top-changed in only one mutant (LOXL1, CYP1B1, FBN1), others followed a mutant group pattern. Some of the genes were new (RAB39B, STC1, CXCL12, CSTA). In particular, one selected gene, the cysteine protease inhibitor cystatin A (CSTA), was commonly induced by all mutants and not by the wild-type. Subsequent functional analysis of the selected gene showed that CSTA was able to reduce wild-type MYOC cleavage in primary trabecular meshwork cells while an inactive mutated CSTA was not. These findings provide a new molecular understanding of the mechanisms of MYOC-causative glaucoma and reveal CSTA, a serum biomarker for cancer, as a potential biomarker and drug for the treatment of MYOC-induced glaucoma

    The potential risks and impact of the start of the 2015–2016 influenza season in the WHO European Region: a rapid risk assessment

    Get PDF
    Background: Countries in the World Health Organization (WHO) European Region are reporting more severe influenza activity in the 2015–2016 season compared to previous seasons. Objectives: To conduct a rapid risk assessment to provide interim information on the severity of the current influenza season. Methods: Using the WHO manual for rapid risk assessment of acute public health events and surveillance data available from Flu News Europe, an assessment of the current influenza season from 28 September 2015 (week 40/2015) up to 31 January 2016 (week 04/2016) was made compared with the four previous seasons. Results: The current influenza season started around week 51/2015 with higher influenza activity reported in Eastern Europe compared to Western Europe. There is a strong predominance of influenza A(H1N1)pdm09 compared to previous seasons, but the virus is antigenically similar to the strain included in the seasonal influenza vaccine. Compared to the 2014/2015 season, there was a rapid increase in the number of severe cases in Eastern European countries with the majority of such cases occurring among adults aged < 65 years. Conclusions: The current influenza season is characterized by an early start in Eastern European countries, with indications of a more severe season. Currently circulating influenza A(H1N1)pdm09 viruses are antigenically similar to those included in the seasonal influenza vaccine, and the vaccine is expected to be effective. Authorities should provide information to the public and health providers about the current influenza season, recommendations for the treatment of severe disease and effective public health measures to prevent influenza transmission

    Network analysis of human glaucomatous optic nerve head astrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Astrocyte activation is a characteristic response to injury in the central nervous system, and can be either neurotoxic or neuroprotective, while the regulation of both roles remains elusive.</p> <p>Methods</p> <p>To decipher the regulatory elements controlling astrocyte-mediated neurotoxicity in glaucoma, we conducted a systems-level functional analysis of gene expression, proteomic and genetic data associated with reactive optic nerve head astrocytes (ONHAs).</p> <p>Results</p> <p>Our reconstruction of the molecular interactions affected by glaucoma revealed multi-domain biological networks controlling activation of ONHAs at the level of intercellular stimuli, intracellular signaling and core effectors. The analysis revealed that synergistic action of the transcription factors AP-1, vitamin D receptor and Nuclear Factor-kappaB in cross-activation of multiple pathways, including inflammatory cytokines, complement, clusterin, ephrins, and multiple metabolic pathways. We found that the products of over two thirds of genes linked to glaucoma by genetic analysis can be functionally interconnected into one epistatic network via experimentally-validated interactions. Finally, we built and analyzed an integrative disease pathology network from a combined set of genes revealed in genetic studies, genes differentially expressed in glaucoma and closely connected genes/proteins in the interactome.</p> <p>Conclusion</p> <p>Our results suggest several key biological network modules that are involved in regulating neurotoxicity of reactive astrocytes in glaucoma, and comprise potential targets for cell-based therapy.</p

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    Results are presented from searches for the standard model Higgs boson in proton–proton collisions at √s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb^(−1) at 7 TeV and 5.3 fb^(−1) at 8 TeV. The search is performed in five decay modes: γγ, ZZ, W^+W^−, τ^+τ^−, and bb. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, γγ and ZZ; a fit to these signals gives a mass of 125.3±0.4(stat.)±0.5(syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    corecore