38 research outputs found

    Unexpected origins of the enhanced pairing affinity of 2 \u27-fluoro-modified RNA

    Get PDF
    Various chemical modifications are currently being evaluated for improving the efficacy of short interfering RNA (siRNA) duplexes as antisense agents for gene silencing in vivo. Among the 2\u27-ribose modifications assessed to date, 2\u27deoxy-2\u27-fluoro-RNA (2\u27-F-RNA) has unique properties for RNA interference (RNAi) applications. Thus, 2\u27-F-modified nucleotides are well tolerated in the guide (antisense) and passenger (sense) siRNA strands and the corresponding duplexes lack immunostimulatory effects, enhance nuclease resistance and display improved efficacy in vitro and in vivo compared with unmodified siRNAs. To identify potential origins of the distinct behaviors of RNA and 2\u27-F-RNA we carried out thermodynamic and X-ray crystallographic analyses of fully and partially 2\u27-F-modified RNAs. Surprisingly, we found that the increased pairing affinity of 2\u27-F-RNA relative to RNA is not, as commonly assumed, the result of a favorable entropic contribution (\u27conformational preorganization\u27), but instead primarily based on enthalpy. Crystal structures at high resolution and osmotic stress demonstrate that the 2\u27-F-RNA duplex is less hydrated than the RNA duplex. The enthalpy-driven, higher stability of the former hints at the possibility that the 2\u27-substituent, in addition to its important function in sculpting RNA conformation, plays an underappreciated role in modulating Watson-Crick base pairing strength and potentially pi-pi stacking interactions

    Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs

    Get PDF
    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3\u27-CH2-CO-NH-5\u27 amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P-OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5\u27-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications

    Unexpected origins of the enhanced pairing affinity of 2′-fluoro-modified RNA

    Get PDF
    Various chemical modifications are currently being evaluated for improving the efficacy of short interfering RNA (siRNA) duplexes as antisense agents for gene silencing in vivo. Among the 2′-ribose modifications assessed to date, 2′deoxy-2′-fluoro-RNA (2′-F-RNA) has unique properties for RNA interference (RNAi) applications. Thus, 2′-F-modified nucleotides are well tolerated in the guide (antisense) and passenger (sense) siRNA strands and the corresponding duplexes lack immunostimulatory effects, enhance nuclease resistance and display improved efficacy in vitro and in vivo compared with unmodified siRNAs. To identify potential origins of the distinct behaviors of RNA and 2′-F-RNA we carried out thermodynamic and X-ray crystallographic analyses of fully and partially 2′-F-modified RNAs. Surprisingly, we found that the increased pairing affinity of 2′-F-RNA relative to RNA is not, as commonly assumed, the result of a favorable entropic contribution (‘conformational preorganization’), but instead primarily based on enthalpy. Crystal structures at high resolution and osmotic stress demonstrate that the 2′-F-RNA duplex is less hydrated than the RNA duplex. The enthalpy-driven, higher stability of the former hints at the possibility that the 2′-substituent, in addition to its important function in sculpting RNA conformation, plays an underappreciated role in modulating Watson–Crick base pairing strength and potentially π–π stacking interactions

    Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme

    Get PDF
    Short interfering RNA (siRNA) duplexes are currently being evaluated as antisense agents for gene silencing. Chemical modification of siRNAs is widely expected to be required for therapeutic applications in order to improve delivery, biostability and pharmacokinetic properties. Beyond potential improvements in the efficacy of oligoribonucleotides, chemical modification may also provide insight into the mechanism of mRNA downregulation mediated by the RNA–protein effector complexes (RNA-induced silencing complex or RISC). We have studied the in vitro activity in HeLa cells of siRNA duplexes against firefly luciferase with substitutions in the guide strand of U for the apolar ribo-2,4-difluorotoluyl nucleotide (rF) [Xia, J. et al. (2006) ACS Chem. Biol., 1, 176–183] as well as of C for rF. Whereas an internal rF:A pair adjacent to the Ago2 (‘slicer’ enzyme) cleavage site did not affect silencing relative to the native siRNA duplex, the rF:G pair and other mismatches such as A:G or A:A were not tolerated. The crystal structure at atomic resolution determined for an RNA dodecamer duplex with rF opposite G manifests only minor deviations between the geometries of rF:G and the native U:G wobble pair. This is in contrast to the previously found, significant deviations between the geometries of rF:A and U:A pairs. Comparison between the structures of the RNA duplex containing rF:G and a new structure of an RNA with A:G mismatches with the structures of standard Watson–Crick pairs in canonical duplex RNA leads to the conclusion that local widening of the duplex formed by the siRNA guide strand and the targeted region of mRNA is the most likely reason for the intolerance of human Ago2 (hAgo2), the RISC endonuclease, toward internal mismatch pairs involving native or chemically modified RNA. Contrary to the influence of shape, the thermodynamic stabilities of siRNA duplexes with single rF:A, A:A, G:A or C:A (instead of U:A) or rF:G pairs (instead of C:G) show no obvious correlation with their activities. However, incorporation of three rF:A pairs into an siRNA duplex leads to loss of activity. Our structural and stability data also shed light on the role of organic fluorine as a hydrogen bond acceptor. Accordingly, UV melting (TM) data, osmotic stress measurements, X-ray crystallography at atomic resolution and the results of semi-empirical calculations are all consistent with the existence of weak hydrogen bonds between fluorine and the H-N1(G) amino group in rF:G pairs of the investigated RNA dodecamers

    Recent Advances in Chemical Modification of Peptide Nucleic Acids

    Get PDF
    Peptide nucleic acid (PNA) has become an extremely powerful tool in chemistry and biology. Although PNA recognizes single-stranded nucleic acids with exceptionally high affinity and sequence selectivity, there is considerable ongoing effort to further improve properties of PNA for both fundamental science and practical applications. The present paper discusses selected recent studies that improve on cellular uptake and binding of PNA to double-stranded DNA and RNA. The focus is on chemical modifications of PNA's backbone and heterocyclic nucleobases. The paper selects representative recent studies and does not attempt to provide comprehensive coverage of the broad and vibrant field of PNA modification

    Studies on the 2'-O-aryol protecting groups in oligoribonucleotide synthesis

    No full text
    Available from Latvian Academic Library / LAL - Latvian Academic LibrarySIGLELVLatvi

    Hydration of short DNA, RNA and 2′-OMe oligonucleotides determined by osmotic stressing

    No full text
    Studies on hydration are important for better understanding of structure and function of nucleic acids. We compared the hydration of self-complementary DNA, RNA and 2′-O-methyl (2′-OMe) oligonucleotides GCGAAUUCGC, (UA)(6) and (CG)(3) using the osmotic stressing method. The number of water molecules released upon melting of oligonucleotide duplexes, Δn(W), was calculated from the dependence of melting temperature on water activity and the enthalpy, both measured with UV thermal melting experiments. The water activity was changed by addition of ethylene glycol, glycerol and acetamide as small organic co-solutes. The Δn(W) was 3–4 for RNA duplexes and 2–3 for DNA and 2′-OMe duplexes. Thus, the RNA duplexes were hydrated more than the DNA and the 2′-OMe oligonucleotide duplexes by approximately one to two water molecules depending on the sequence. Consistent with previous studies, GC base pairs were hydrated more than AU pairs in RNA, whereas in DNA and 2′-OMe oligonucleotides the difference in hydration between these two base pairs was relatively small. Our data suggest that the better hydration of RNA contributes to the increased enthalpic stability of RNA duplexes compared with DNA duplexes
    corecore