154 research outputs found

    Exciton energy transfer in nanotube bundles

    Full text link
    Photoluminescence is commonly used to identify the electronic structure of individual nanotubes. But, nanotubes naturally occur in bundles. Thus, we investigate photoluminescence of nanotube bundles. We show that their complex spectra are simply explained by exciton energy transfer between adjacent tubes, whereby excitation of large gap tubes induces emission from smaller gap ones via Forster interaction between excitons. The consequent relaxation rate is faster than non-radiative recombination, leading to enhanced photoluminescence of acceptor tubes. This fingerprints bundles with different compositions and opens opportunities to optimize them for opto-electronics.Comment: 5 pages, 5 figure

    ZnO nanorods prepared via ablation of Zn with millisecond laser in liquid media

    Get PDF
    ZnO nanomaterials with controlled size, shape and surface chemistry are required for applications in diverse areas, such as optoelectronics, photocatalysis, biomedicine and so on. Here, we report on ZnO nanostructures with rod-like and spherical shapes prepared via laser ablation in liquid using a laser with millisecond-long pulses. By changing laser parameters (such as pulse width and peak power), the size or aspect ratio of such nanostructures could be tuned. The surface chemistry and defects of the products were also strongly affected by applied laser conditions. The preparation of different structures is explained by the intense heating of liquid media caused by millisecond-long pulses and secondary irradiation of already-formed nanostructures

    MOISTURE CONTENT OF NATURAL GAS IN BOTTOM HOLE ZONE

    Get PDF
    For the traditional problem of gas flow to a well in the center of circular reservoir, the influence of initial reservoir conditions on dynamics of gas moisture content distribution has been determined. Investigations have been performed in the framework of mathematical model of non-isothermal real gas flow through porous media where heat conductivity was considered to be negligible in comparison with convective heat transfer. It is closed by empirical correlation of compressibility coefficient with pressure and temperature, checked in previous publications. Functional dependence of moisture content in gas on pressure and temperature is based on empirical modification of Bukacek relation. Numerical experiment was performed in the following way. At first step, axisymmetric problem of non-isothermal flow of real gas in porous media was solved for a given value of pressure at the borehole bottom, which gives the values of pressure and temperature as functions of time and radial coordinate. Conditions at the outer boundary of the reservoir correspond to water drive regime of gas production. At the second step, the calculated functions of time and coordinate were used to find the analogous function for moisture content. The results of experiment show that if reservoir temperature essentially exceeds gas – hydrate equilibrium temperature than moisture content in gas distribution is practically reflects the one of gas temperature. In the opposite case, gas will contain water vapor only near  bottom hole and at the rest of reservoir it will be almost zero. In both cases, pressure manifests its role through the rate of gas production, which in turn influences convective heat transfer and gas cooling due to throttle effect

    High-sensitivity refractive index sensor based on large-angle tilted fiber grating with carbon nanotube deposition

    Get PDF
    This paper presents a highly sensitive ambient refractive index (RI) sensor based on 81° tilted fiber grating (81°-TFG) structure UV-inscribed in standard telecom fiber (62.5μm cladding radius) with carbon nanotube (CNT) overlay deposition. The sensing mechanism is based on the ability of CNT to induce change in transmitted optical power and the high sensitivity of 81°-TFG to ambient refractive index. The thin CNT film with high refractive index enhances the cladding modes of the TFG, resulting in the significant interaction between the propagating light and the surrounding medium. Consequently, the surrounding RI change will induce not only the resonant wavelength shift but also the power intensity change of the attenuation band in the transmission spectrum. Result shows that the change in transmitted optical power produces a corresponding linear reduction in intensity with increment in RI values. The sample shows high sensitivities of ∼207.38nm/RIU, ∼241.79nm/RIU at RI range 1.344-1.374 and ∼113.09nm/RIU, ∼144.40nm/RIU at RI range 1.374-1.392 (for X-pol and Y-pol respectively). It also shows power intensity sensitivity of ∼ 65.728dBm/RIU and ∼ 45.898 (for X-pol and Y-pol respectively). The low thermal sensitivity property of the 81°-TFG offers reduction in thermal cross-sensitivity and enhances specificity of the sensor

    Zinc regeneration in rechargeable zinc-air fuel cells:a review

    Get PDF
    Zinc-air fuel cells (ZAFCs) present a promising energy source with a competing potential with the lithium-ion battery and even with proton-exchange membrane fuel cells (PEMFCs) for applications in next generation electrified transport and energy storage. The regeneration of zinc is essential for developing the next-generation, i.e., electrochemically rechargeable ZAFCs. This review aims to provide a comprehensive view on both theoretical and industrial platforms already built hitherto, with focus on electrode materials, electrode and electrolyte additives, solution chemistry, zinc deposition reaction mechanisms and kinetics, and electrochemical zinc regeneration systems. The related technological challenges and their possible solutions are described and discussed. A summary of important R&D patents published within the recent 10 years is also presented

    Enzyme-functionalized thin-cladding long-period fiber grating in transition mode at dispersion turning point for sugar-level and glucose detection

    Get PDF
    Enzyme-functionalized dual-peak long-period fiber grating (LPFG) inscribed in 80-μm-cladding B/Ge codoped single-mode fiber is presented for sugar-level and specific glucose detection. Before enzyme functionalization, the dual-peak LPFG was employed for refractive index sensing and sugar-level detection and high sensitivities of ∼4298.20  nm/RIU and 4.6696  nm/% were obtained, respectively. Glucose detection probe was attained by surface functionalization of the dual-peak LPFG via covalent binding with aminopropyl triethoxysilane used as a binding site. Optical micrographs confirmed the presence of enzyme. The surface-functionalized dual-peak LPFG was tested with D-(+)-glucose solution of different concentrations. While the peak 2 at the longer wavelength was suitable only to measure lower glucose concentration (0.1 to 1.6  mg/ml) recording a high sensitivity of 12.21±0.19  nm/(mg/ml), the peak 1 at the shorter wavelength was able to measure a wider range of glucose concentrations (0.1 to 3.2  mg/ml) exhibiting a maximum resonance wavelength shift of 7.12±0.12  nm/mg/ml. The enzyme-functionalized dual-peak LPFG has the advantage of direct inscription of highly sensitive grating structures in thin-cladding fibre without etching, and most significantly, its sensitivity improvement of approximately one order of magnitude higher than previously reported LPFG and excessively tilted fibre grating (Ex-TFG) for glucose detection

    Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    Get PDF
    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker

    Photoluminescence of melanin-based nanocomposites with fullerene derivative

    Get PDF
    This paper presents the study of the photoluminescent properties of molecular compositions consisting of melanin and an electron-acceptor material – fullerene derivative, [6,6]-phenyl C61 butyric acid methyl ester (PCBM). These molecular compositions have not been studied well and are promising for molecular electronics of natural materials, in particular, for organic solar cells. The novelty of this work relates to the study of photoluminescence spectra obtained for these molecular compositions and nanocomposites in various solvents (chloroform, acetonitrile, and toluene) as well as in a polystyrene matrix; these studies were carried out at various, in particular, liquid helium (4.2 K), temperatures. The obtained results allowed us to ascertain mechanisms of the state of aggregation and donor-acceptor interaction between melanin and PCBM
    • …
    corecore