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Abstract 

ZnO nanomaterials with controlled size, shape and surface chemistry are required for applications in 

diverse areas, such as optoelectronics, photocatalysis, biomedicine and so on. Here, we report on ZnO 

nanostructures with rod-like and spherical shapes prepared via laser ablation in liquid using a laser with 

millisecond-long pulses. By changing laser parameters (such as pulse width and peak power), the size 

or aspect ratio of such nanostructures could be tuned. The surface chemistry and defects of the products 

were also strongly affected by applied laser conditions. The preparation of different structures is 

explained by the effect of intense heat and/or pressure of liquid media caused by millisecond-long pulses. 
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1. Introduction 

In the last decade, laser ablation in liquid (LAL) has proven to be an attractive, simple, and efficient 

technique to generate a large variety of nanostructures of diverse materials [1-16]. In this approach, laser 

beam is typically focused on a solid (often metal) target immersed into a liquid and produces various 

nanostructures whose chemistry, morphology and size distribution are defined by both the laser pulse 

parameters and the liquid [1,2,17]. This technique is attractive as a green approach using minimum 

solvents, easy-to-use, and even sometimes capable of controlling the morphology of produced 

nanomaterials [1,2,6,8,14]. The recent use of high pressures, i.e. ablating in pressurized cells, permits to 

expand the technique and allows for more control over the product [17-20].  

ZnO is one of the most versatile materials with various potential applications in nanotechnology 

and other related fields, as this environmentally friendly semiconductor has a great potential in optics and 

optoelectronics, photocatalysis, energy conversion, biomedicine, and so on [3,6,7,9,10,18,21-31]. 

Amongst metal oxides, ZnO is probably one of the most investigated semiconductor materials and 

accordingly its nanostructures have been synthesized by various methods, such as (to name a few) 

solvothermal synthesis [22-24,27,30-32], microwave irradiation [31,33], and CVD [26,27]. The LAL 

method was also applied, and both doped and non-doped, as well as surface-stabilized or non-stabilized, 

ZnO nanoparticles (NPs) with different morphologies and sizes were reported [4-10,12,14-18,34-36].      

In most cases, nanosecond pulsed lasers were applied [4-7,9,12], with little work done exploiting 

either femtosecond or picosecond [34,36] or millisecond lasers [3,8,14] with shorter and longer pulses, 

respectively. This work deals with the preparation of ZnO nanostructures by means of millisecond pulsed 

laser. Since the pulse produced by millisecond lasers is much longer compared to heat propagation in 

solids, the temperature of ablated target is expected to rise, generating intense heating of surrounding 
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liquid, and consequently influencing the produced nanostructures. As liquid media, water and ethanol 

were used. Varying laser beam parameters, the effect of liquid media and beam parameters on the 

produced nanostructures was studied. The product was characterized by means of several microscopic 

and spectroscopic techniques. It is shown that ZnO nanorods or nanospheres can be prepared in one step 

when water or ethanol are used as media, which was not observed when laser beams with shorter pulses 

were applied [5,6,17,18,34]. 

 

 

2. Experimental procedures 

The experimental setup used in this work is schematically illustrated in Fig.1. Zinc plates (99.5 % 

purity, 2 mm thick) were placed vertically into a quartz cuvette and used as a target. The size of the cuvette 

was 30 mm x 30 mm x 50 mm, with the wall thickness of 2 mm. The amount of liquid used was typically 

~15 ml. A millisecond pulsed Nd:YAG laser with the wavelength of 1064 nm was applied to irradiate the 

target through the cuvette side wall, its beam being focused on the Zn plate surface by means of a lens 

with the focal length of 9.0 cm. The focused beam diameter was 150 µm. The applied pulse peak power 

was 1 and 5 kW, while the pulse width was changed from 0.5 to 2 ms. All the samples were prepared for 

30 min, while no medium agitation was applied.  

The prepared nanostructures were drop-cast on Cu grids for further observations with transmission 

electron microscopy (TEM, HF-2200 from Hitachi). Upon centrifugation (16,500 rpm, 15 min), the 

prepared suspensions were cast on a Si substrate and then characterized by means of X-ray photoelectron 

spectroscopy (XPS, Quantum 2000, ULVAC-PHI), X-ray diffractometry (XRD, D8 Discover from 

Bruker) and photoluminescence (PL) spectroscopy. For PL measurements, a homemade system 

previously described elsewhere was used [17,18]. The PL measurements were conducted at room 
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temperature with a He-Cd laser (325 nm) as excitation source and using dry ZnO NPs drop-cast on Si 

wafers. Absorption spectra of the obtained suspensions were recorded in a UV-vis spectrometer (UV-2450 

from Shimadzu). 

 

3. Results and discussion 

Figures 2a-f present TEM images of ZnO nanomaterials prepared upon ablating Zn targets in water 

for 30 min with different values of pulse width (0.5, 1 and 2 ms) and peak energy (1 and 5 kW). It is well 

seen in Figs.2a-f that under the applied conditions the products prepared in water tended to be rod-shaped. 

As the pulse width and peak power were varied, both size and shape of the nanostructures were observed 

to change. In order to investigate the effect of laser parameters on the size and aspect ratio of ZnO 

nanorods, the TEM images of the samples were used to measure their geometrical parameters. 

The influence of pulse width on the size and aspect ratio of prepared nanorods is shown in 

Figs.2g,h,  where red and blue symbols stand for peak powers of 1 and 5 kW, respectively. In Fig.2g, 

open circles and triangles indicate the length and the width of ZnO nanorods prepared in water, with the 

aspect ratio being shown in Fig.2h. The size of ZnO nanorods is seen in Fig.2g to change with both the 

pulse width and peak power used. The nanorod length is seen to increase and saturate with the increase in 

pulse width from 0.5 to 2 ms (see red and blue circles in Fig.2g), while the nanorod width changes less 

and mainly remains between 30 and 50 nm (red and blue triangles in Fig.2g). At pulse peak power of 5 

kW, the size of prepared nanorods is seen to increase in both dimensions as the pulse width changes from 

0.5 to 1 ms, while no noticeable changes in size are observed when longer pulses (2 ms) are applied. In 

Fig.2h it is seen that ZnO nanorods with a wide range of aspect ratios, from 1.6 to 6, were prepared in our 

experiments. When pulse width was raised from 0.5 to 1 ms, the aspect ratio is seen in Fig.2h to rise. At 
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lower peak power of 1 kW (red symbols in Fig.2h), the aspect ratio was then observed to drop at a pulse 

width value of 2 ms. At the same time, at a higher peak power of 5 kW, no such a drop in aspect ratio was 

observed between pulse width values of 1 and 2 ms. It is thus seen that the use of millisecond-long pulses 

allows for a wide control over the aspect ratio of ZnO nanorods, which was never reported in the previous 

studies where mainly nanosecond and femptosecond pulsed lasers were utilized. 

The products prepared in pure ethanol were also studied by TEM. Figures 3a-c and Fig.3d show 

TEM images of such samples and how their size was influenced by pulse width, respectively. When 

ethanol was used as a liquid medium, only spherically-shaped NPs were found in the product, as well seen 

in Figs.3a-c. Similar to their counterparts prepared in water, the size of NPs prepared in ethanol was also 

governed by pulse width (see Fig.3d). With increase in pulse width from 0.5 to 2 ms, the NP diameter 

tended to increase.  

The above-mentioned changes in product shapes and sizes observed in Fig.2 and Fig.3 are 

believed to be resulted from different liquid medium parameters and medium chemistry during the 

evaporation, oxidation and agglomeration of ablated Zn species, as all such stages occur following the 

laser beam hit on Zn target in either water or ethanol. The shape, size and chemistry of products prepared 

via LAL are known to be a complex function of numerous variables, such as: the nature of liquid 

environment, laser pulse parameters, changes in growth temperature and temperature gradients, surface 

energy of forming species, availability of surfactant molecules and so on [1,2,7,8,17]. Longer laser pulses 

are known to heat metal targets intensively [8,14], which agrees well with our observations. We speculate 

that the ZnO rods prepared in water media, as well as their growth along the longitudinal axis, are directly 

related to elevated temperatures observed during our experiments and caused by the use of longer laser 

pulses. As an example, when the pulse width was changed from 0.5 to 1 ms, the medium temperature was 
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found to increase from 40 to 80 oC, and from 80 to 90 oC at pulse peak power of 1 and 5 kW, respectively.  

The formation of ZnO nanorods and their elongation at elevated temperatures was previously 

reported by Ishikawa and coworkers, who ablated ZnO in neat water with a nano-second pulsed laser in 

a setup heated to 60-80 oC by an external source [7]. Their findings generally agree with our observations, 

implying that the elevated medium temperatures were among the reasons for both the formation of rod-

shaped ZnO NPs and the increase of their aspect ratio observed in Fig.2g. The main difference between 

our experiments and those of Ishikawa and coauthors was the absence of any external heating in our case 

as millisecond-long pulses provided a heating effect by themselves. As shown in Supplementary 

Information Fig.S1 and Fig.2a,b, when water medium was cooled down (by using ice) during ablation, 

spherically-shaped ZnO NPs were prepared instead of nanorods, which fully supports the above 

assumption. This also agrees well with the conclusions of Ishikawa at al. who proposed that small 

spherical NPs of ZnO are formed during laser ablation of Zn in pure water at room temperature, while at 

elevated temperatures such small nanocrystals recrystallize into larger rod-like nanostructures [7]. Thus, 

the temperature of water medium is very crucial for nanorod growth. The advantage of our approach is 

that no external heating was needed to keep medium temperatures around 60-80 oC, as this temperature 

range was naturally achieved via ablating the target with longer pulses.  

In general, there are at least two parameters to be considered as playing crucial role in NP 

formation in our experiments, those being medium temperature and secondary irradiation of already 

formed structures. The temperature rise caused by longer pulses and higher pulse peak power was already 

mentioned above. As a high-surface-energy material, small ZnO NPs are well known to tend to 

agglomerate in the absence of any surface modifiers or surfactant that would stabilize their surface and 

suppress further agglomeration [7,18]. This process is accelerated by elevated temperatures which 
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stimulate the growth along the fastest-growing direction of the hexagonal wurtzite ZnO phase, i.e. the 

[0001] direction [26,28,37-40].  When the applied laser conditions allowed for a certain temperature 

raise, caused by target heating, nanostructures with similar sizes and shapes were observed (see Fig.2.g, 

the data for products prepared at 1kW and 2 ms, 5kW and pulse widths longer than 1 ms). Note that in all 

such cases, the measured temperatures during ablation were quite similar, typically reaching ~70-80 oC.  

The second parameter is secondary irradiation of produced nanostructures [1,2,8], which occurs 

when the already formed structures are subjected to irradiation by subsequent laser pulses. The probability 

of such irradiation should be higher at longer pulse duration, while its effect is expected to be stronger at 

higher pulse peak energy. In Fig.2g, this effect is believed to be seen as all the nanorods produced at 5 kW 

(blue circles) and longer pulse duration values of 1 and 2 ms are shorter than those prepared at 1 kW (red 

circles). In addition, it should be noted that when the secondary irradiation fragments NPs and makes 

them smaller, the size distribution of the product should be somewhat wider, which indeed is observed in 

Fig.2g for the products prepared at 5 kW and with pulse duration of 1 and 2 ms. 

The trends presented in Fig.2h are believed to represent all the complexity of various factors 

affecting the formation of nanomaterials during LAL processes, in particular the impact of the two above 

mentioned factors. On one hand, longer pulses should lead to a stronger heating effect through energy 

absorption by the Zn target, which in turn should result in longer and larger ZnO nanorods. On the other 

hand, longer pulses should increase the risk of secondary irradiation (and thus partial fragmentation) of 

already-formed nanostructures, thus making them smaller. One can assume that between 0.5 and 1 ms, 

the former effect dominates, while between 1 and 2 ms, the latter (partial defragmentation caused by 

secondary irradiation) manifests itself (see Figs.2g,h). The assumption on the effect of secondary 

irradiation is also supported by the fact that the ZnO nanorods produced at 5 kW were never as long as 
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those produced at 1 kW (see Figs.2g,h). The nanorods with the highest aspect ratio (of ~6) obtained at 1 

kW and 1 ms (as peak power and pulse width, respectively) are believed to be a result of the two above 

trends: elevated medium temperatures at pulse widths above 1 ms and stronger secondary irradiation (and 

fragmentation of already-formed nanostructures) at longer pulse durations and higher power. 

The fact that the NPs presented in Fig.3 and prepared in pure ethanol were spherical and somewhat 

smaller than those presented in Fig.2 (prepared in water) implies that the mechanisms involved into 

formation of such NPs are somewhat different. On one hand, the oxidizing potential of ethanol, when 

compared to that of water, is well known to be lower [8,14,17]. This is supported by the finding that the 

ZnO NPs prepared in ethanol (Fig.3) had a considerable fraction of metallic zinc phase, which can be 

explained by much lower oxidizing abilities of ethanol compared to those of water and agrees with our 

previous report [17]. Such NPs, with metallic Zn inclusions, are believed to be less prone to aggregation 

and re-crystallization compared to their counterparts based on single-phase ZnO. This also explains why 

the NPs prepared in ethanol were spherical rather than rod-shaped: having metallic inclusions, they could 

not recrystallize as pure ZnO rods. On the other hand, one should keep in mind that ethanol molecules 

might have acted as surface modifier and passivate forming NPs, thus somewhat suppressing their 

aggregation.  

To lend support to the above assumptions, we carried out a series of additional experiments in 

which either starch was added into water or some water was added to ethanol. Starch was previously 

shown to passivate ZnO NPs during their generation via LAL [35], and thus its addition was expected to 

suppress nanorod formation. As well seen in Supplementary Information Fig.S2c, indeed, no ZnO 

nanorods were observed after the experiment. In the other experiment, an ethanol-water (9:1 v/v) mixture 

was used as a medium instead of pure ethanol. As shown in Supplementary Information Figs.S3b,c, this 
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led to the formation of ZnO nanorods in the product. This proves that the presence of water is essential 

for the formation of ZnO nanorods, as even as much as 10% of water in the liquid medium was enough 

to oxidize Zn species and lead to ZnO NPs recrystallized into nanorods.  

When ethanol was used as medium, the diameter of generated NPs is seen in Fig.3d to increase 

with pulse width. Similar to the case with the length of ZnO nanorods in Fig.2, this finding can also be 

attributed to the effect of somewhat elevated medium temperatures. Although the agglomeration of NPs 

forming during ablation of Zn in ethanol was believed to be somewhat suppressed, it still contributed into 

NP growth and was more efficient at higher temperatures (associated with longer laser pulses and more 

intense energy absorption by the Zn target). Indeed, our measurements confirmed that when the pulse 

duration was changed from 0.5 to 2.0 ms, the temperature of ethanol after 30-min-long experiments 

increased from 66 to 77 oC, almost reaching the boiling point of ethanol.  

Figure 4 shows XRD patterns of samples prepared under different conditions both in water (a) 

and ethanol (b) media. Here, as well as in Figs.5,6 and 7a, red, black and blue colors are used to indicate 

samples prepared at pulse duration of 0.5, 1 and 2 ms, respectively. In a similar way, solid and dashed 

lines denote samples fabricated at pulse peak power of 1 and 5 kW, respectively. In Fig.4, the peak 

positions of hexagonal wurtzite ZnO and Zn phases are marked with vertical pink and green lines, 

respectively [37], while those of Si substrate are marked with dashed black lines. Based on the XRD 

patterns in Fig.4 and in agreement with previously published results on LAL-generated ZnO NPs 

[7,9,10,17,18,35,36], ZnO nanostructures were prepared in water (Fig.4a,b), while those prepared in 

ethanol demonstrated a Zn phase (Fig.4c). It should be noted that XRD patterns of some samples prepared 

in water occasionally showed the presence of metallic zinc phase too (see, e.g., Fig.4a, pattern 2 from top). 

Although a better understanding of this finding may need additional investigations, it is believed to be 
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explained by the nature of the processes occurring when millisecond lasers are exploited. As was 

previously demonstrated by Niu at al. [8,14], nano-sized droplets of molten metal are typically produced 

by millisecond-long pulses, which then are fragmented and released loose into the liquid where they are 

oxidized by the reactive medium such as water. Thereofore, we assume that at higher pulse peak power 

of 5 kW, some of such metallic zinc droplets were not fragmented well to be oxidized completely. This 

may also explain why no metallic zinc phase was observed when lower pulse peak energy of 1 kW was 

used.        

Figure 5 demonstrates absorption spectra of colloidal suspensions prepared in water (a) and 

ethanol (b). Peaks derived from ZnO and metallic Zn are marked with vertical pink and green lines, being 

at 380 and 280 nm, respectively. The spectra presented in Fig.5 agree well with the results of XRD 

measurements discussed above, as they also confirm that the ZnO phase dominates in the structures 

prepared in water, while metallic Zn inclusions emerge in those prepared in ethanol. It is worth noting 

that some of products prepared in water also demonstrated small amounts of metallic Zn, as seen in Fig.5a. 

Since the peak at 280 nm results from plasmonic property of metallic Zn [41], it is probably indicative of 

metallic inclusions inside such nanostructures. On the other hand, the broad shoulder observed at 380 nm 

in Fig.5b implies that the products prepared in ethanol also included ZnO, which is well consistent with 

the XRD patterns in Fig.4b. Thus, both X-ray diffraction and absorption spectroscopy analyses 

demonstrated that, similar to our previous findings for samples prepared by nanosecond pulsed laser [17], 

the reactivity of liquid medium is also a critical factor determining the phase composition of 

nanostructures prepared by means of millisecond-long pulses. 

Figure 6 presents XPS spectra of the samples, as they were drop-cast on a Si wafer and naturally 

dried in air. Spectra of samples prepared in water and ethanol are displayed in panels (a,b) and (c,d), 
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respectively. The spectra are shown for samples prepared at different laser parameters, while positions of 

corresponding peaks are indicated with the same colors and in the same manner as the data previously 

presented in Figs.4,5. The vertical lines in Figs. 6a,c and Figs.6b,d, where narrow scans for O 1s and Zn 

2p3 peaks are given, indicate the positions of Zn-O (pink), O-C (violet), O-H (orange), Zn-Zn (light blue) 

and Zn(OH)2 (green) bonding. The chemical bonding states in the nanostructures prepared under different 

conditions are seen to be tuned via changing laser parameters (pulse peak power and pulse width) and 

liquid medium used. All the samples prepared via ablating Zn targets with millisecond pulsed laser are 

seen in Fig.6 to have a significant amount of OH groups on their surface. Interestingly, the fraction of 

hydroxylated Zn is higher in nanostructures prepared at lower pulse peak power (1 kW) in water and in 

those prepared at higher pulse peak power (5 kW) in ethanol. This might be explained by the fact that 

Zn(OH)2 is always the first stage during the ZnO formation via laser ablation of Zn in liquids, with further 

dehydration to form ZnO being a reversible process [7,10,42,43]. Therefore, it can be assumed that more 

zinc hydroxide species should be expected in less oxidative media (ethanol). In water, complex changes 

in oxidative states were observed when laser parameters were varied. The surface of the products prepared 

at 1 kW are seen in Fig.6a to be oxidized and hydroxylated, tending to be less hydroxylated and shifting 

to oxide state when laser pulses with 5 kW were used. The use of pulses with higher energy stimulates 

dehydration of Zn(OH)2 forming in the product and its transformation into ZnO phase.  

Figure 7a exhibits PL spectra of the samples prepared in water, while fractions of various defects 

present in the samples as a function of pulse width at peak pulse powers of 1 kW and 5 kW are shown in 

Fig.7b and Fig.7c, respectively. The latter defects were evaluated through deconvolution of the PL spectra, 

as shown in Fig.7a and in agreement with previously published reports [17,27,38]. All the spectra 

presented in Fig.7a were normalized, while colors and solid or dashed lines are prescribed to PL spectra 
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of the samples in the same manner as those in Figs.4-6. The dotted color curves underneath the red 

spectrum represent the results of its curve-fitting (bottom of Fig.7a). In accordance with the previous 

report of Goto at al. [17], seven Gaussian curves were used to fit the spectra, each of which corresponding 

to various defects in ZnO nanostructures [17,27,38]. The peak in the UV range is derived from the band-

edge emission (depicted as “exciton” emission for simplicity) [38,44]. The peak at 450-500 nm shows 

Zn-related defects, corresponding to transition between conduction band and Zn vacancies (VZn), 

interstitial Zn (Zni) to valence band, Zni and VZn [17,38]. The peaks around 505, 550, and 630 nm are the 

features of singly-charged oxygen vacancies (VO
+), doubly-charged oxygen vacancies (VO

++) and surface 

defects, respectively [17, 27]. As clearly seen in Fig.7, PL emission related to surface defects (black circles 

in Figs.7b,c) and doubly-charged oxygen vacancies (VO
++, red circles in Figs.7b,c) dominate in the ZnO 

nanorods prepared in water. At the same time, the sample prepared at 1 kW and 0.5 ms is seen in Fig.7a 

to demonstrate a stronger emission caused by Zn-related defects, which is probably explained by a lower 

laser fluence and lower medium temperature during its preparation. Although the surface-related and VO
++ 

-related defects (black and red circles in Fig.7b) are still dominant in this sample, similar to the others 

presented in Fig.7a, other defects such as VZn and Zni are also formed and manifest themselves at relatively 

higher level (Fig.7b, blue and green circles).  

Figures 7b,c demonstrate how the fraction of each defect emitting in the PL spectra in Fig.7a 

changes as a function of pulse width at peak pulse power of 1 kW (b) and 5 kW (c). The fractions of 

integrated areas for each peak (whose position is indicated by vertical lines in Fig.7a) are shown with the 

same color that is used in panel (a) for the corresponding Gaussian peak. At 1 kW, as pulse width increases, 

the density of the majority of emitting defects decreases or remains mainly unchanged, while that for the 

VO
++ related defects increases (red circles in Fig.7b). The main changes in defect density redistribution 
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observed in Fig.7b for the samples prepared at 0.5 ms and longer should be explained by higher 

temperatures of water medium caused by longer pulses.  

The intensity of the exciton emission (purple circles) is seen in Fig.7c to increase monotonously 

with pulse duration at larger peak power (5 kW) applied. This enhancement of the exciton-related 

emission is probably caused by metallic inclusions into ZnO nanorods, in agreement with the previous 

report of others [39]. Traces of such metallic zinc inclusions into the ZnO samples were observed by XRD 

and absorption measurements and revealed in Fig.4a and Fig.5. At the same time, the exciton emission is 

expected to be also affected by the VO
++ defects (red circles). However, the latter defects should be 

gradually eliminated as NPs gradually recrystallize into ZnO nanorods at elevated temperatures, which is 

not observed in Figs.7b,c.  

The fraction of surface defects (black circles in Figs.7b,c) remains mainly unchanged and 

independent on pulse width and pulse peak power, which is probably related to the shapes of the nanorods 

that did not change dramatically. There is also no significant redistribution in defect fractions observed 

for samples prepared with pulses as long as 1 and 2 ms, which is probably explained by the observation 

that water medium was hotter at such pulse widths used, reaching 70-90 oC, while it was always slightly 

cooler when shorter pulses were applied. Thus, as discussed above, the main factors influencing the 

difference in defect distribution between samples prepared with shorter (0.5 ms) and longer pulses (1 and 

2 ms) are higher medium temperatures and higher influence of fragmentation. The formation energy of 

Vo
++ is known to be lower compared to that of Zni defects [45]. This may explain why at 1 kW, as the 

medium temperature rises along with pulse width from 0.5 to 1 and 2 ms, Vo
++ defects appear to become 

more favorable while the number of Zni defects decreases (red and yellow circles in Fig.7b). At the same 

time, as the ZnO nanorods are exposed to secondary irradiation with higher-energy pulses (at 5 kW), they 
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are believed to be fragmented due to photoexcitation accompanied with more intense heating. This might 

cause partial heat-induced dissociation to Zn and O atoms and further segregation of Zn atoms from ZnO 

[46], which in turn might result in the appearance of Zn-related defects, as well as inclusions of metallic 

phase in nanorods.   

 

4. Conclusions 

In conclusion, the use of millisecond-long pulses to ablate zinc in water or ethanol was found to 

provide nanostructures with various shapes, sizes, phase composition and defects. While the use of laser 

beams with shorter pulses (nanosecond or femtosecond range) previously reported by others typically led 

to ZnO nanoparticles prepared in water, ZnO nanorods were produced in this study. The growth of such 

rod-like nanostructures is explained by a temperature raise of the liquid environment caused by long-pulse 

irradiation of the target. By changing pulse width (0.5 - 2 ms) and peak pulse power (1 - 5 kW), ZnO 

nanorods with aspect ratios from 1.6 to 6 were prepared. In parallel, spherically shaped nanoparticles were 

produced in ethanol medium, with metallic Zn inclusions well detected by X-ray diffraction and diameters 

controlled via laser pulse width. XPS measurements confirmed that the surface chemistry of the products 

was dependent on laser parameters used. The latter laser parameters were also found to influence the 

density of various defects in the generated ZnO nanorods, which resulted in control over photoluminescent 

emission from such nanostructures. The demonstrated control over the shape, size, phase composition and 

photoluminescent properties of the produced ZnO nanostructures is believed to be attractive for numerous 

applications. 
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Figure captions:   
 

Figure 1. Experimental setup used in this study with millisecond pulsed Nd:YAG laser ablating the surface of Zn 

plate immersed in liquid media (water and ethanol). 

 

Figure 2. TEM images of nanostructures prepared in water at different pulse width and peak power values. Samples 

shown in (a-c) and (d-f) were generated at pulse peak power of 1 and 5 kW, respectively. Panels (a, d), (b, e), and (c, f) 

correspond to samples prepared at pulse width values of 0.5, 1 and 2 ms, respectively. Scale bars indicate 100 nm. Panels 

(g,h) demonstrate the effect of pulse width on longitudinal (open circles) and short (open triangles) axes (g) and aspect 

ratio (h) of the ZnO nanorods shown in (a-f). Red and blue markers indicate peak power of 1 and 5 kW, respectively. 

 

Figure 3. TEM images of nanostructures prepared in ethanol at different pulse width: (a) 0.5, (b) 1, and (c) 2 ms. 

Applied peak power was 5 kW. Scale bars indicate 100 nm. Influence of pulse width on average diameter of produced 

particles is presented in panel (d). 

  

Figure 4. XRD patterns of nanostructures prepared in water (a) and ethanol (b). Red, black, and blue lines correspond 

to samples prepared at pulse widths of 0.5, 1, and 2 ms, respectively. Solid and dashed lines correspond to samples 

prepared at 1 and 5 kW, respectively. A gray XRD pattern in (a) corresponds to Si substrate. Vertical solid pink and 

green lines correspond to peaks of hexagonal ZnO and metallic Zn, respectively, while dotted black line indicates the 

position of Si peaks. 

 

Figure 5. Absorption spectra of samples prepared in water (a) and ethanol (b). Red, black and blue lines denote the 

pulse widths of 0.5 , 1, and 2 ms, respectively. Solid and dashed lines indicate samples prepared at laser powers of 1 

kW and 5 kW, respectively. 

 

Figure 6. XPS spectra of the products prepared in water (a, b) and ethanol (c, d). Spectra of samples prepared at peak 

power of 1 and 5 kW presented with solid and dashed lines, respectively, while those of samples prepared at pulse 

duration of 0.5, 1 and 2 ms are shown with red, black and blue color, respectively. Narrow scans for O 1s (a, c) and Zn 

2p3 (b, d) peaks are presented. Vertical lines stand for ZnO (pink), OC (violet), OH (orange), metallic Zn (light blue) 

and Zn(OH)2 (pink) species. 

 

Figure 7. Photoluminescence spectra (a) and fractions of each emitting component (b, c) for ZnO nanostructures 

prepared in water at different laser parameters. In panel (a), red, black, and blue colors denote samples prepared at 0.5, 

1, and 2 ms, respectively, while solid and dashed lines indicate those prepared at 1 and 5 kW, respectively. Dotted spectra 

are the Gaussian curves obtained through the deconvolution of the red spectrum, corresponding vertical color lines 

indicating the peak positions and the nature of their sources. Panels (b, c) exhibit the effect of laser pulse width at peak 

power 1 (b) and 5 kW (c) on the defects detected in the ZnO products. The colors shown in (b) and (c) correspond to 
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emission attributed to exciton, vacancies of Zn (VZn) , interstitial Zn (Zni), both Zni and VZn defects, vacancies due to 

singly- and doubly-charged oxygen (VO+, VO++), and surface defects. 
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Figure 1. Experimental setup used in this study with millisecond pulsed Nd:YAG laser ablating the 

surface of Zn plate immersed in liquid media (water and ethanol) 
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Figure 2. TEM images of nanostructures prepared in water at different pulse width and peak power 

values. Samples shown in (a-c) and (d-f) were generated at pulse peak power of 1 and 5 kW, respectively. 

Panels (a, d), (b, e), and (c, f) correspond to samples prepared at pulse width values of 0.5, 1 and 2 ms, 

respectively. Scale bars indicate 100 nm. Panels (g,h) demonstrate the effect of pulse width on 

longitudinal (open circles) and short (open triangles) axes (g) and aspect ratio (h) of the ZnO nanorods 

shown in (a-f). Red and blue markers indicate peak power of 1 and 5 kW, respectively. 
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Figure 3. TEM images of nanostructures prepared in ethanol at different pulse width: (a) 0.5, (b) 1, 

and (c) 2 ms.  Applied peak power was 5 kW. Scale bars indicate 100 nm. Influence of pulse width on 

average diameter of produced particles is presented in panel (d). 
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Figure 4. XRD patterns of nanostructures prepared in water (a) and ethanol (b). Red, black, and 

blue lines correspond to samples prepared at pulse widths of 0.5, 1, and 2 ms, respectively. Solid and 

dashed lines correspond to samples prepared at 1 and 5 kW, respectively. A gray XRD pattern in (a) 

corresponds to Si substrate. Vertical solid pink and green lines correspond to peaks of hexagonal ZnO and 

metallic Zn, respectively, while dotted black line indicates the position of Si peaks. 
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Figure 5. Absorption spectra of samples prepared in water (a) and ethanol (b). Red, black and blue 

lines denote the pulse widths of 0.5 , 1, and 2 ms, respectively. Solid and dashed lines indicate samples 

prepared at laser powers of 1 kW and 5 kW, respectively. 
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Figure 6. XPS spectra of the products prepared in water (a, b) and ethanol (c, d). Spectra of samples prepared at 

peak power of 1 and 5 kW presented with solid and dashed lines, respectively, while those of samples prepared at 

pulse duration of 0.5, 1 and 2 ms are shown with red, black and blue color, respectively. Narrow scans for O 1s (a, c) 

and Zn 2p3 (b, d) peaks are presented. Vertical lines stand for ZnO (pink), OC (violet), OH (orange), metallic Zn 

(light blue) and Zn(OH)2 (pink) species. 
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Figure 7. Photoluminescence spectra (a) and fractions of each emitting component (b, c) for ZnO nanostructures prepared in 

water at different laser parameters. In panel (a), red, black, and blue colors denote samples prepared at 0.5, 1, and 2 ms, 

respectively, while solid and dashed lines indicate those prepared at 1 and 5 kW, respectively. Dotted spectra are the Gaussian 

curves obtained through the deconvolution of the red spectrum, corresponding vertical color lines indicating the peak positions 

and the nature of their sources. Panels (b, c) exhibit the effect of laser pulse width at peak power 1 (b) and 5 kW (c) on the 

defects detected in the ZnO products. The colors shown in (b) and (c) correspond to emission attributed to exciton, vacancies of 

Zn (VZn) , interstitial Zn (Zni), both Zni and VZn defects, vacancies due to singly- and doubly-charged oxygen (VO
+, VO

++), and 

surface defects. 


