17 research outputs found

    Assessment of the sensitivity of anti-interferon binding and neutralizing antibody assays in patients with relapsing -remitting multiple sclerosis under interferon- beta treatment- A comparative study

    Get PDF
    Interferon beta (IFNβ) is a first line disease-modifying treatment for the management of relapsing-remitting multiple sclerosis. IFNβ preparations may elicit an immune response reflected by the development of binding- (Babs) and neutralizing- antibodies (Nabs). The detrimental effect of Nabs is depicted by attenuation of treatment effect and as a result the deterioration of clinical and radiological parameters. The incidence and titers of Nabs vary by the preparation of IFNβ used, dose, frequency and route of administration, treatment duration and type of assay being used. In this study we aimed to assess the sensitivity of the binding and the neutralizing assays in patients with relapsing-remitting multiple sclerosis under treatment with interferon-beta. The assessment of the results suggests that Western blot assay is more sensitive than ELISA for the detection of binding antibodies. The evaluation of CPE and Real-time-PCR results indicates that they possess similar sensitivity. However, CPE assay remains the gold standard method for the detection of neutralizing antibodies, based on the World Health Organization. Our results indicate that interlaboratory studies are needed for a commonly accepted assay that might reflect a reliable and cost-effective procedure for the Babs and Nabs detection in MS patients under IFNβ treatment

    Neuroprotection from inflammation: Experimental allergic encephalomyelitis facilitates traumatic spinal cord injury recovery

    Get PDF
    Passive immunization with T cells activated against central nervous system (CNS) - associated myelin antigens has been found to provide neuroprotection following CNS trauma, leading to the concept of protective autoimmunity. However, limited research exists about whether actively induced CNS autoimmunity may offer any similar benefit. In this study, the kinetics and the effect of endogenously anti-myelin activated T cells following spinal cord injury (SCI), were investigated. Experimental allergic encephalomyelitis (EAE) was actively induced in Lewis rats following immunization with myelin basic protein (MBP). In vivo 5-Bromo-2-deoxyuridine (BrdU) incorporation from activated T cells was used as a marker of T cell- proliferation. BrdU was injected on 5th, 6th and 7th day post-induction (DPI) at all EAE-animals. On DPI 8, spinal cord compressive injury was induced by a transient extradural application of an aneurysm clip at the T8 spinal level. SCI resulted in spastic paralysis of hindlimbs, in all but sham-injured animals. Recovery from SCI was significantly better in EAE-animals. Activated mononuclear cells were selectively accumulated at the site of the injury. Axonal loss was less in the EAE group following SCI. Our findings indicate that actively induced autoimmunity against CNS myelin antigens may protect spinal cord pathways from mechanical injury

    Exercise intensity-dependent immunomodulatory effects on encephalomyelitis.

    No full text
    BACKGROUND: Exercise training (ET) has beneficial effects on multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the intensity-dependent effects of ET on the systemic immune system in EAE remain undefined. OBJECTIVE: (1) To compare the systemic immune modulatory effects of moderate versus high-intensity ET protocols in protecting against development of EAE; (2) To investigate whether ET affects autoimmunity selectively, or causes general immunosuppression. METHODS: Healthy mice performed moderate or high-intensity treadmill running programs. Proteolipid protein (PLP)-induced transfer EAE was utilized to examine ET effects specifically on the systemic immune system. Lymph node (LN)-T cells from trained versus sedentary donor mice were transferred to naïve recipients and EAE severity was assessed, by clinical assessment and histopathological analysis. LN-T cells derived from donor trained versus sedentary PLP-immunized mice were analyzed in vitro for proliferation assays by flow cytometry analysis and cytokine and chemokine receptor gene expression using real-time PCR. T cell-dependent immune responses of trained versus sedentary mice to the nonautoantigen ovalbumin and susceptibility to Escherichia coli-induced acute peritonitis were examined. RESULTS: High-intensity training in healthy donor mice induced significantly greater inhibition than moderate-intensity training on proliferation and generation of encephalitogenic T cells in response to PLP-immunization, and on EAE severity upon their transfer into recipient mice. High-intensity training also inhibited LN-T cell proliferation in response to ovalbumin immunization. E. coli bacterial counts and dissemination were not affected by training. INTERPRETATION: High-intensity training induces superior effects in preventing autoimmunity in EAE, but does not alter immune responses to E. coli infection

    RNA Editing Alterations Define Disease Manifestations in the Progression of Experimental Autoimmune Encephalomyelitis (EAE)

    No full text
    RNA editing is an epitranscriptomic modification, leading to targeted changes in RNA transcripts. It is mediated by the action of ADAR (adenosine deaminases acting on double-stranded (ds) RNA and APOBEC (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like) deaminases and appears to play a major role in the pathogenesis of many diseases. Here, we assessed its role in experimental autoimmune encephalomyelitis (EAE), a widely used non-clinical model of autoimmune inflammatory diseases of the central nervous system (CNS), which resembles many aspects of human multiple sclerosis (MS). We have analyzed in silico data from microglia isolated at different timepoints through disease progression to identify the global editing events and validated the selected targets in murine tissue samples. To further evaluate the functional role of RNA editing, we induced EAE in transgenic animals lacking expression of APOBEC-1. We found that RNA-editing events, mediated by the APOBEC and ADAR deaminases, are significantly reduced throughout the course of disease, possibly affecting the protein expression necessary for normal neurological function. Moreover, the severity of the EAE model was significantly higher in APOBEC-1 knock-out mice, compared to wild-type controls. Our results implicate regulatory epitranscriptomic mechanisms in EAE pathogenesis that could be extrapolated to MS and other neurodegenerative disorders (NDs) with common clinical and molecular features

    Additional file 1: Figure S1. of Nogo receptor complex expression dynamics in the inflammatory foci of central nervous system experimental autoimmune demyelination

    No full text
    Bielschowsky staining, immunofluorescence, and real-time PCR quality controls. (A1–4) Typical images of scores 0–3 in Bielschowsky silver staining. (B, C) Preabsorption assay for LINGO-1 and TROY in serial sections of chronic and acute phases, respectively (the phase where signal is most abundant). (B1) LINGO-1 antibody specifications: rabbit polyclonal, Abcam ab23631, LOT N/A, dilution 1:300. (B2) LINGO-1 peptide specifications: rabbit, Abcam ab25890, LOT #GR41007-1, incubation with ab in 10× molecular ratio. (C1) TROY antibody specifications: goat polyclonal, Santa Cruz sc-13711 (E-19), LOT #H0707, epitope mapping near the C-terminus of TROY of mouse origin, dilution 1:100. (C2) TROY peptide specifications: goat, Santa Cruz sc-13711 P, LOT #B0402, incubation with ab in 10× molecular ratio. (D, E) Antibody specificity test for p75 and NgR with the use of another antibody (different company) recognizing a different epitope in serial sections of chronic and acute phases, respectively (the phase where signal is most abundant). (D1) p75 antibody #1 specifications: mouse monoclonal, Abcam ab8877, LOT GR136825-1, ME20.4, dilution 1:400. (D2) p75 antibody #2 specifications: mouse monoclonal, Santa Cruz p75 (B-1) sc-271708, LOT #J0611, epitope mapping between amino acids 393–427 at the C-terminus of NGFR p75 of human origin, 1:100. (E1) NgR antibody #1 specifications: rabbit polyclonal, Santa Cruz sc-25659 (H-120), LOT E1209, epitope corresponding to amino acids 31–150 mapping near the N-terminus of Nogo-R of human origin, dilution 1:100. (E2) NgR antibody #2 specifications: rabbit polyclonal, Abcam ab26291, LOT N/A, epitope from within residues 150–250 of rat Nogo receptor, dilution 1:100. (F) β-actin real-time PCR quality control showing the specific amplification products on agarose gel and the melting curves of their respective genes; curve identifier: light green TROY, orange p75, dark green LINGO-1. (G) mRNA levels of coreceptors LINGO-1, p75, and TROY in the spinal cord of EAE animals by real-time PCR analysis using GAPDH as a second, quality control, house-keeping gene. The levels of mRNA expression for the coreceptors (G1) LINGO-1, (G2) p75, and (G3) TROY, followed the same pattern with those that underwent β-actin analysis. Error bars indicate the standard statistical error of the mean (SEM), ***p < 0.001, **p < 0.01. Black scale bar = 20 μm
    corecore