3,919 research outputs found

    A dedicated photometric system for the detection of Wolf-Rayet stars

    Full text link
    We present here tests of a five-filter photometric system aimed at WR classification. In addition to the well-known easy separation between the WN and WC spectral types, these tests indicate interesting potentialities in the discrimination of subgroups among the WN and the WC which look well related to the classical subtypes. The proposed combinations of filters (or derived ones) bear enough discriminating power to satisfy some evolutionary studies in crowded fields where spectroscopic follow-up is not possible.Comment: 10 pages, 7 figures, uses l-aa.sty and psfig for figure inclusion. Also available at http://vela.astro.ulg.ac.be/preprint/P10 Accepted for publication in Astronomy & Astrophysics Supp

    Ternary cluster decay within the liquid drop model

    Get PDF
    Longitudinal ternary and binary fission barriers of 36^{36}Ar, 56^{56}Ni and 252^{252}Cf nuclei have been determined within a rotational liquid drop model taking into account the nuclear proximity energy. For the light nuclei the heights of the ternary fission barriers become competitive with the binary ones at high angular momenta since the maximum lies at an outer position and has a much higher moment of inertia.Comment: Talk presented at the 9th International Conference on Clustering Aspects of Nuclear Structure and Dynamics (CLUSTERS'07

    Rotational velocities of A-type stars II. Measurement of vsini in the northern hemisphere

    Full text link
    This work is the second part of the set of measurements of vsini for A-type stars, begun by Royer et al. (2002). Spectra of 249 B8 to F2-type stars brighter than V=7 have been collected at Observatoire de Haute-Provence (OHP). Fourier transforms of several line profiles in the range 4200--4600 A are used to derive vsini from the frequency of the first zero. Statistical analysis of the sample indicates that measurement error mainly depends on vsini and this relative error of the rotational velocity is found to be about 5% on average. The systematic shift with respect to standard values from Slettebak et al. (1975), previously found in the first paper, is here confirmed. Comparisons with data from the literature agree with our findings: vsini values from Slettebak et al. are underestimated and the relation between both scales follows a linear law: vsini(new) = 1.03 vsini(old) + 7.7. Finally, these data are combined with those from the previous paper (Royer et al. 2002), together with the catalogue of Abt & Morrell (1995). The resulting sample includes some 2150 stars with homogenized rotational velocities.Comment: 16 pages, includes 13 figures, accepted in A&

    The perturbed sublimation rim of the dust disk around the post-AGB binary IRAS08544-4431

    Full text link
    Context: Post-Asymptotic Giant Branch (AGB) binaries are surrounded by stable dusty and gaseous disks similar to the ones around young stellar objects. Whereas significant effort is spent on modeling observations of disks around young stellar objects, the disks around post-AGB binaries receive significantly less attention, even though they pose significant constraints on theories of disk physics and binary evolution. Aims: We want to examine the structure of and phenomena at play in circumbinary disks around post-AGB stars. We continue the analysis of our near-infrared interferometric image of the inner rim of the circumbinary disk around IRAS08544-4431. We want to understand the physics governing this inner disk rim. Methods: We use a radiative transfer model of a dusty disk to reproduce simultaneously the photometry as well as the near-infrared interferometric dataset on IRAS08544-4431. The model assumes hydrostatic equilibrium and takes dust settling self-consistently into account. Results: The best-fit radiative transfer model shows excellent agreement with the spectral energy distribution up to mm wavelengths as well as with the PIONIER visibility data. It requires a rounded inner rim structure, starting at a radius of 8.25 au. However, the model does not fully reproduce the detected over-resolved flux nor the azimuthal flux distribution of the inner rim. While the asymmetric inner disk rim structure is likely to be the consequence of disk-binary interactions, the origin of the additional over-resolved flux remains unclear. Conclusions: As in young stellar objects, the disk inner rim of IRAS08544-4431 is ruled by dust sublimation physics. Additional observations are needed to understand the origin of the extended flux and the azimuthal perturbation at the inner rim of the disk.Comment: Accepted for publication in A&A, 13 figures, 13 page

    Stress fractures in 2011: practical approach

    Get PDF
    Stress fractures occur when excessive loads are applied to a bone whose mechanical strength is normal. Bone insufficiency fractures, in contrast, are due to physiological loads applied to bone of inadequate mechanical strength [1]. This contradistinction is obviously an oversimplifi cation. In practice, a continuum exists between these two clearly defined situations. The objective of the third ODISSEE meetings [2,3] held under the aegis of the GRIO was to review current knowledge on stress fractures. The pathophysiology of stress fractures is still poorly understood. When loads are applied to a bone, particularly in a repetitive manner, an elastic deformity occurs, followed by a plastic deformity and, finally, by microfractures. Bone strength varies across individuals. It depends not only on the intrinsic qualities of the bone tissue, but also on the magnitude and repetitiveness of the loads applied to the bone. Bone tissue fatigue is an inability to repair the microdamage caused by mechanical loading. The number and length of the microfractures increase, resulting in a fracture with clinical symptoms and radiographic changes [4]. Stress fractures are a common reason for physician visits among athletes and military recruits. They account for 5% to 14% of all physician visits, depending on the study population [5,6]. Although stress fractures can arise at any site, the most common locations are the tibia, particularly in runners; the metatarsals (most notably the second and third metatarsals) in hikers, runners, dancers, and military recruits; the iliopubic and ischiopubic rami of the pelvis in military recruits, gymnasts, dancers, and soccer players; and the femur in cross-country runners. The calcaneus is also a common site of involvement in all populations. Stress fractures are rare at the upper limbs, except in high- level gymnasts country runners. The calcaneus is also a common site of involvement in all populations. Stress fractures are rare at the upper limbs,except in high-level gymnasts

    Droplet and cluster formation in freely falling granular streams

    Full text link
    Particle beams are important tools for probing atomic and molecular interactions. Here we demonstrate that particle beams also offer a unique opportunity to investigate interactions in macroscopic systems, such as granular media. Motivated by recent experiments on streams of grains that exhibit liquid-like breakup into droplets, we use molecular dynamics simulations to investigate the evolution of a dense stream of macroscopic spheres accelerating out of an opening at the bottom of a reservoir. We show how nanoscale details associated with energy dissipation during collisions modify the stream's macroscopic behavior. We find that inelastic collisions collimate the stream, while the presence of short-range attractive interactions drives structure formation. Parameterizing the collision dynamics by the coefficient of restitution (i.e., the ratio of relative velocities before and after impact) and the strength of the cohesive interaction, we map out a spectrum of behaviors that ranges from gas-like jets in which all grains drift apart to liquid-like streams that break into large droplets containing hundreds of grains. We also find a new, intermediate regime in which small aggregates form by capture from the gas phase, similar to what can be observed in molecular beams. Our results show that nearly all aspects of stream behavior are closely related to the velocity gradient associated with vertical free fall. Led by this observation, we propose a simple energy balance model to explain the droplet formation process. The qualitative as well as many quantitative features of the simulations and the model compare well with available experimental data and provide a first quantitative measure of the role of attractions in freely cooling granular streams

    Proton radioactivity within a generalized liquid drop model

    Get PDF
    The proton radioactivity half-lives of spherical proton emitters are investigated theoretically. The potential barriers preventing the emission of protons are determined in the quasimolecular shape path within a generalized liquid drop model (GLDM) including the proximity effects between nuclei in a neck and the mass and charge asymmetry. The penetrability is calculated with the WKB approximation. The spectroscopic factor has been taken into account in half-life calculation, which is obtained by employing the relativistic mean field (RMF) theory combined with the BCS method with the force NL3. The half-lives within the GLDM are compared with the experimental data and other theoretical values. The GLDM works quite well for spherical proton emitters when the spectroscopic factors are considered, indicating the necessity of introducing the spectroscopic factor and the success of the GLDM for proton emission. Finally, we present two formulas for proton emission half-life calculation similar to the Viola-Seaborg formulas and Royer's formulas of alpha decay.Comment: 7 pages, 1 figur

    Photon-Neutrino Interactions

    Full text link
    We discuss the interaction of photons with neutrinos including two lepton loops. The parity violation in the gamma-nu to gamma-nu channel due to two lepton loops is substantially enhanced relative to the one lepton loop contribution. However there is no corresponding enhancement in the parity conserving amplitude in either the direct or the cross channel.Comment: 12 pages, 5 figure

    η\eta Carinae's Dusty Homunculus Nebula from Near-Infrared to Submillimeter Wavelengths: Mass, Composition, and Evidence for Fading Opacity

    Get PDF
    Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable η\eta Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the Great Eruption. We present the 2.4 - 670 μ\mum spectral energy distribution, constructed from legacy ISO observations and new spectroscopy obtained with the {\em{Herschel Space Observatory}}. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions which are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common. Spherical corundum grains are supported by the good match to a narrow 20.2 μ\mum feature. Our preferred model contains nitrides AlN and Si3_3N4_4 in low abundances. Dust masses range from 0.25 to 0.44 MM_\odot but MtotM_{\rm{tot}} \ge 45 MM_\odot in both cases due to an expected high Fe gas-to-dust ratio. The bulk of dust is within a 5"" ×\times 7"" central region. An additional compact feature is detected at 390 μ\mum. We obtain LIRL_{\rm{IR}} = 2.96 ×\times 106^6 LL_\odot, a 25\% decline from an average of mid-IR photometric levels observed in 1971-1977. This indicates a reduction in circumstellar extinction in conjunction with an increase in visual brightness, allowing 25-40\% of optical and UV radiation to escape from the central source. We also present an analysis of 12^{12}CO and 13^{13}CO J=54J = 5-4 through 989-8 lines, showing that the abundances are consistent with expectations for CNO-processed material. The [12^{12}C~{\sc{ii}}] line is detected in absorption, which we suspect originates in foreground material at very low excitation temperatures.Comment: Accepted in Ap
    corecore