38,601 research outputs found

    Nucleophilicity/Electrophilicity Excess in Analyzing Molecular Electronics

    Full text link
    Intramolecular electron transfer capability of all metal aromatic and anti-aromatic aluminum cluster compounds is studied in terms of density functional theory based global and local reactivity descriptors. This study will provide important inputs towards the fabrication of the material required for molecular electronics.Comment: 21 pages, 6 figures, 13 table

    Higher dimensional models of light Majorana neutrinos confronted by data

    Get PDF
    We discuss experimental and observational constraints on certain models of higher dimensional light Majorana neutrinos. Models with flavor blind brane-bulk couplings plus three or four flavor diagonal light Majorana neutrinos on the brane, with subsequent mixing induced solely by the Kaluza-Klein tower of states, are found to be excluded by data on the oscillations of solar, atmospheric and reactor neutrinos, taken together with the WMAP upper bound on the sum of neutrino masses. Extra dimensions, if relevant to neutrino mixing, need to discriminate between neutrino flavors.Comment: 5 pages, Revtex4, 2 PS figures. Fig. 2a and 2b from earlier version are now combined into one figure. Minor modifications in the text. References adde

    Permeability of a one-dimensional potential barrier

    Get PDF
    Permeability of one dimensional potential barrie

    A microbiological assay method for p-aminobenzoic acid

    Get PDF
    Since the establishment of p-aminobenzoic acid as a member of the B vitamin group, a considerable interest has been shown in methods of determination in natural materials. Since known chemical methods are not sufficiently sensitive, it became evident that microbiological tests should be the most practicable. The organism Clostridium acetobutylicum has been used (1) but no general assay procedure has been presented. Several bacterial strains which respond to p-aminobenzoic acid have been investigated in this laboratory, but satisfactory assay procedures with these organisms have not yet been devised. For the discovery of the test organism used in the procedure described in this paper, we are indebted to Dr. Beadle and Dr. Tatum who kindly furnished us with a culture of their p-aminobenzoic acid requiring a mutant strain of Neurospora crassa, designated by them as Neurospora crassa p-aminobenzoicless No. 1633 (2). This mold will grow optimally on a medium consisting of inorganic salts, ammonium tartrate, sucrose, biotin, and p-aminobenzoic acid. For purposes of assay, however, it has proved advantageous to supplement this basal medium with natural extracts which are either naturally low in p-aminobenzoic acid or have been treated to remove it. With such a complex medium, the possibility of interference by toxic substances or stimulatory substances other than p-aminobenzoic acid which might be present in samples to be assayed is reduced to a minimum. Since the completion of a considerable part of the experimental work described in this paper, microbiological assay methods for p-aminobenzoic acid have been published by Landy and Dicken (3) utilizing the organism Acetobacter suboxydans and by Lewis (4) using Lactobacillus arabinosus 17-5

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Potential algebra approach to position dependent mass Schroedinger equation

    Full text link
    It is shown that for a class of position dependent mass Schroedinger equation the shape invariance condition is equivalent to a potential symmetry algebra. Explicit realization of such algebras have been obtained for some shape invariant potentials
    corecore