4,101 research outputs found
Rapport final de la Collaboration CERN-CNRS pour la construction du LHC: Accord Technique d'Exécution No 2 Cryostats et assemblage des sections droites courtes (SSS) du LHC
Depuis 1995 et suite à la signature du protocole de Collaboration, le CERN, le CEA et le CNRS ont étroitement collaboré dans le cadre de la contribution exceptionnelle de la France à la construction du LHC. Pour le CNRS, l'Institut de Physique Nucléaire d'Orsay a pris en charge deux Accords Techniques d'Exécution. Le premier concerne la conception et l'assemblage des Sections Droites Courtes de la machine, et le deuxième, l'étalonnage des thermomètres cryogéniques du LHC. Dans le cadre de l'Accord Technique d'Exécution N°2, le Bureau d'Etudes de la Division Accélérateur de l'IPNO et le groupe AT-CRI du CERN ont travaillé de concert pour mener à bien la conception des SSS (Short Straight Section) et de tous les équipements nécessaires à l'assemblage. Ce rapport a donc pour objectif de dresser, en termes d'historique, d'organisation, de résultats quantitatifs et qualitatifs et de moyens mis en ?uvre, un tableau aussi complet que possible du déroulement de cette Collaboration entre le CERN et le CNRS
Photonic Analogue of Two-dimensional Topological Insulators and Helical One-Way Edge Transport in Bi-Anisotropic Metamaterials
Recent progress in understanding the topological properties of condensed
matter has led to the discovery of time-reversal invariant topological
insulators. Because of limitations imposed by nature, topologically non-trivial
electronic order seems to be uncommon except in small-band-gap semiconductors
with strong spin-orbit interactions. In this Article we show that artificial
electromagnetic structures, known as metamaterials, provide an attractive
platform for designing photonic analogues of topological insulators. We
demonstrate that a judicious choice of the metamaterial parameters can create
photonic phases that support a pair of helical edge states, and that these edge
states enable one-way photonic transport that is robust against disorder.Comment: 13 pages, 3 figure
Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters
We propose and theoretically investigate a model to realize cascaded optical
nonlinearity with few atoms and photons in one-dimension (1D). The optical
nonlinearity in our system is mediated by resonant interactions of photons with
two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide.
Multi-photon transmission in the waveguide is nonreciprocal when the emitters
have different transition energies. Our theory provides a clear physical
understanding of the origin of nonreciprocity in the presence of cascaded
nonlinearity. We show how various two-photon nonlinear effects including
spatial attraction and repulsion between photons, background fluorescence can
be tuned by changing the number of emitters and the coupling between emitters
(controlled by the separation).Comment: 6 pages, 4 figure
The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time
Peer reviewedPreprin
Convergent Surface Water Distributions in U.S. Cities
Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and distribution: in other words, cities will gain or lose water such that they become more similar to each other than are their surrounding natural landscapes. Using a database of more than 1 million water bodies and 1 million km of streams, we compared the surface water of 100 US cities with their surrounding undeveloped land. We evaluated differences in areal (A WB) and numeric densities (N WB) of water bodies (lakes, wetlands, and so on), the morphological characteristics of water bodies (size), and the density (D C) of surface flow channels (that is, streams and rivers). The variance of urban A WB, N WB, and D C across the 100 MSAs decreased, by 89, 25, and 71%, respectively, compared to undeveloped land. These data show that many cities are surface water poor relative to undeveloped land; however, in drier landscapes urbanization increases the occurrence of surface water. This convergence pattern strengthened with development intensity, such that high intensity urban development had an areal water body density 98% less than undeveloped lands. Urbanization appears to drive the convergence of hydrological features across the US, such that surface water distributions of cities are more similar to each other than to their surrounding landscapes. © 2014 The Author(s)
Can We Really Prevent Suicide?
Every year, suicide is among the top 20 leading causes of death globally for all ages. Unfortunately, suicide is difficult to prevent, in large part because the prevalence of risk factors is high among the general population. In this review, clinical and psychological risk factors are examined and methods for suicide prevention are discussed. Prevention strategies found to be effective in suicide prevention
include means restriction, responsible media coverage, and general public education, as well identification methods such as screening, gatekeeper training, and primary care physician education. Although the treatment for preventing suicide is difficult, follow-up that includes pharmacotherapy, psychotherapy, or both may be useful. However, prevention methods cannot be restricted to the individual. Community, social, and policy interventions will also be essentia
Metatarsophalangeal joint function during sprinting: A comparison of barefoot and sprint spike shod foot conditions
This is the authors' post print as accepted for publication in Journal of Applied Biomechanics. The published version is available at http://journals.humankinetics.com/jabThe metatarsophalangeal joint is an important contributor to lower limb energetics during sprint running. This study compared the kinematics, kinetics and energetics of the metatarsophalangeal joint during sprinting barefoot and wearing standardised sprint spikes. The aim of this investigation was to determine whether standard sprinting footwear alters the natural motion and function of the metatatarsophalangeal joint exhibited during barefoot sprint running. Eight trained sprinters performed maximal sprints along a runway, four sprints in each condition. Three dimensional high speed (1000 Hz) kinematic and kinetic data were collected at the 20 m point. Joint angle, angular velocity, moment, power and energy were calculated for the metatarsophalangeal joint. Sprint spikes significantly increase sprinting velocity (0.3 m/s average increase), yet limit the range of motion about the metatarsophalangeal joint (17.9 % average reduction) and reduce peak dorsiflexion velocity (25.5 % average reduction), thus exhibiting a controlling affect over the natural behaviour of the foot. However, sprint spikes improve metatarsophalangeal joint kinetics by significantly increasing the peak metatarsophalangeal joint moment (15 % average increase) and total energy generated during the important push-off phase (0.5 J to 1.4 J). The results demonstrate substantial changes in metatarsophalangeal function and potential improvements in performance-related parameters due to footwear
Plasmodium knowlesi Genome Sequences from Clinical Isolates Reveal Extensive Genomic Dimorphism.
Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology
Holographic Brownian Motion in Magnetic Environments
Using the gauge/gravity correspondence, we study the dynamics of a heavy
quark in two strongly-coupled systems at finite temperature: Super-Yang-Mills
in the presence of a magnetic field and non-commutative Super-Yang-Mills. In
the former, our results agree qualitatively with the expected behavior from
weakly-coupled theories. In the latter, we propose a Langevin equation that
accounts for the effects of non-commutativity and we find new interesting
features. The equation resembles the structure of Brownian motion in the
presence of a magnetic field and implies that the fluctuations along
non-commutative directions are correlated. Moreover, our results show that the
viscosity is smaller than the commutative case and that the diffusion
properties of the quark are unaffected by non-commutativity. Finally, we
compute the random force autocorrelator and verify that the
fluctuation-dissipation theorem holds in the presence of non-commutativity.Comment: 34 pages. v2: typos corrected. v3: title and abstract slightly
modified in order to better reflect the contents of the paper; footnote 3 and
one reference were also added; version accepted for publication in JHE
Testing foundations of quantum mechanics with photons
The foundational ideas of quantum mechanics continue to give rise to
counterintuitive theories and physical effects that are in conflict with a
classical description of Nature. Experiments with light at the single photon
level have historically been at the forefront of tests of fundamental quantum
theory and new developments in photonics engineering continue to enable new
experiments. Here we review recent photonic experiments to test two
foundational themes in quantum mechanics: wave-particle duality, central to
recent complementarity and delayed-choice experiments; and Bell nonlocality
where recent theoretical and technological advances have allowed all
controversial loopholes to be separately addressed in different photonics
experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review
articl
- …
