548 research outputs found

    Entanglement teleportation via Bell Mixture

    Get PDF
    We investigate the teleportation of the bipartite entangled states through two equally noisy quantum channels, namely mixture of Bell states. There is a particular mixed state channel for which all pure entanglement in a known Schmidt basis remain entangled after teleportation and it happens till the channel state remains entangled. Werner state channel lacks both these features. The relation of these noisy channels with violation of Bell's inequality and 2-E inequality is studied.Comment: 7 pages, late

    Phenomenological analysis connecting proton-proton and antiproton-proton elastic scattering

    Full text link
    Based on the behavior of the elastic scattering data, we introduce an almost model-independent parametrization for the imaginary part of the scattering amplitude, with the energy and momentum transfer dependences inferred on empirical basis and selected by rigorous theorems and bounds from axiomatic quantum field theory. The corresponding real part is analytically evaluated by means of dispersion relations, allowing connections between particle-particle and particle-antiparticle scattering. Simultaneous fits to proton-proton and antiproton-proton experimental data in the forward direction and also including data beyond the forward direction, lead to a predictive formalism in both energy and momentum transfer. We compare our extrapolations with predictions from some popular models and discuss the applicability of the results in the normalization of elastic rates that can be extracted from present and future accelerator experiments (Tevatron, RHIC and LHC).Comment: 17 pages, 17 figures, to appear in Eur. Phys. J.

    Bell's inequalities for states with positive partial transpose

    Get PDF
    We study violations of n particle Bell inequalities (as developed by Mermin and Klyshko) under the assumption that suitable partial transposes of the density operator are positive. If all transposes with respect to a partition of the system into p subsystems are positive, the best upper bound on the violation is 2^((n-p)/2). In particular, if the partial transposes with respect to all subsystems are positive, the inequalities are satisfied. This is supporting evidence for a recent conjecture by Peres that positivity of partial transposes could be equivalent to existence of local classical models.Comment: 4 pages, REVTe

    Discrete Symmetries and Generalized Fields of Dyons

    Full text link
    We have studied the different symmetric properties of the generalized Maxwell's - Dirac equation along with their quantum properties. Applying the parity (\mathcal{P}), time reversal (\mathcal{T}), charge conjugation (\mathcal{C}) and their combined effect like parity time reversal (\mathcal{PT}), charge conjugation and parity (\mathcal{CP}) and \mathcal{CP}T transformations to varius equations of generalized fields of dyons, it is shown that the corresponding dynamical quantities and equations of dyons are invariant under these discrete symmetries. Abstract Key words- parity, time reversal, charge-conjugation, dyons Abstract PACS No.- 14.80 Hv

    Coherent states for exactly solvable potentials

    Full text link
    A general algebraic procedure for constructing coherent states of a wide class of exactly solvable potentials e.g., Morse and P{\"o}schl-Teller, is given. The method, {\it a priori}, is potential independent and connects with earlier developed ones, including the oscillator based approaches for coherent states and their generalizations. This approach can be straightforwardly extended to construct more general coherent states for the quantum mechanical potential problems, like the nonlinear coherent states for the oscillators. The time evolution properties of some of these coherent states, show revival and fractional revival, as manifested in the autocorrelation functions, as well as, in the quantum carpet structures.Comment: 11 pages, 4 eps figures, uses graphicx packag

    Flavor changing single top quark production channels at e^+e^- colliders in the effective Lagrangian description

    Get PDF
    We perform a global analysis of the sensitivity of LEP2 and e^+e^- colliders with a c.m. energy in the range 500 - 2000 GeV to new flavor-changing single top quark production in the effective Lagrangian approach. The processes considered are sensitive to new flavor-changing effective vertices such as Ztc, htc, four-Fermi tcee contact terms as well as a right-handed Wtb coupling. We show that e^+ e^- colliders are most sensitive to the physics responsible for the contact tcee vertices. For example, it is found that the recent data from the 189 GeV LEP2 run can be used to rule out any new flavor physics that can generate these four-Fermi operators up to energy scales of \Lambda > 0.7 - 1.4 TeV, depending on the type of the four-Fermi interaction. We also show that a corresponding limit of \Lambda > 1.3 - 2.5 and \Lambda > 17 - 27 TeV can be reached at the future 200 GeV LEP2 run and a 1000 GeV e^+e^- collider, respectively. We note that these limits are much stronger than the typical limits which can be placed on flavor diagonal four-Fermi couplings. Similar results hold for \mu^+\mu^- colliders and for tu(bar) associated production. Finally we briefly comment on the necessity of measuring all flavor-changing effective vertices as they can be produced by different types of heavy physics.Comment: 34 pages, plain latex, 7 figures embadded in the text using epsfig. Added new references and discussions regarding their relevance to the paper. Added more comments on the comparison between flavor-changing and flavor-diagonal contact terms and on the importance of measuring the Ztc verte

    Establishment and dynamics of the balsam fir seedling bank in old forests of northeastern Quebec

    Get PDF
    This study examines balsam fir (Abies balsamea (L.) Mill.) recruitment in old fir stands. Studying the regeneration of these stands is essential to understand the regeneration dynamic of the species in the absence of standdestroying disturbances. The objectives were (1) to obtain substrate-seedling associations for different age-classes and according to the presence or absence of adventitious roots; (2) to evaluate the contribution of the seed rain to seedling recruitment; (3) to re-examine age structures using the most appropriate method that minimizes estimation errors due to the presence of adventitious roots. A total of 90 quadrats (1 m2) were established along transects. In each quadrat, subtrates were characterized (type and topography) and their area was estimated. All balsam fir seedlings (<50 cm tall) present in the quadrats were located, harvested whole (root and shoot), and described (age, height, presence of adventitious roots, etc). Fir seedlings were strongly associated with woody mounds covered with thin mats of mixed mosses and Pleurozium shreberi (Bird.) Mitt. but negatively associated with flat topography particularly dominated by Hylocomium splendens (Hedw.) B.S.G. The presence of adventitious root is related to seedling age more than substrate type or topography. The age structure is in agreement with seed production and disturbance regime

    Sulfonated Styrene-(ethylene-co-butylene)-styrene/Montmorillonite Clay Nanocomposites: Synthesis, Morphology, and Properties

    Get PDF
    Sulfonated styrene-(ethylene-butylene)-styrene triblock copolymer (SSEBS) was synthesized by reaction of acetyl sulfate with SEBS. SSESB-clay nanocomposites were then prepared from hydrophilic Na-montmorillonite (MT) and organically (quaternary amine) modified hydrophobic nanoclay (OMT) at very low loading. SEBS did not show improvement in properties with MT-based nanocomposites. On sulfonation (3 and 6 weight%) of SEBS, hydrophilic MT clay-based nanocomposites exhibited better mechanical, dynamic mechanical, and thermal properties, and also controlled water–methanol mixture uptake and permeation and AC resistance. Microstructure determined by X-ray diffraction, atomic force microscopy, and transmission electron microscopy due to better dispersion of MT nanoclay particles and interaction of MT with SSEBS matrix was responsible for this effect. The resulting nanocomposites have potential as proton transfer membranes for Fuel Cell applications
    • 

    corecore