18 research outputs found

    Interpretation of Biochemical Tests for Iron Metabolism in Hyperthyroidism

    Get PDF
    Objective: Several studies suggest that thyroid hormones may affect erythropoiesis. However the mechanism by which thyroid hormones alter the ferritin concentration is not well known. Therefore, the present case-control study was designed to determine the changes due to hyperthyroidism in serum ferritin, iron and transferrin levels and to investigate the inter-relationship between these parameters.Material: This study was conducted on 50 newly diagnosed hyperthyroid patients and the results were compared with 50 age and sex matched healthy controls. Serum ferritin was assessed by two site sandwich immunoassay using direct chemiluminometric technology. TIBC and serum iron were estimated by colorimetric method.Results: Serum ferritin (314.43 ± 68.7 ng/mL) and iron concentration (159.88 ± 36.28 µg/dL) were found to be increased in hyperthyroid patients as compared to healthy controls (255.23 ± 45.5 ng/mL and 110.52 ± 20.52 µg/dL respectively). There was a significant difference between hyperthyroid patients and healthy controls in serum levels of ferritin and iron (p0.05 for both). Serum ferritin and iron were correlated significantly positive with thyroid parameters while a significant negative correlation was found with transferrin.Conclusion: Our data suggest that alterations in thyroid status in a given individual produce significant changes in serum ferritin, iron and transferrin levels. Increased ferritin levels seem to be protective against increased oxidative stress seen in hyperthyroidism but these also increase atherosclerotic risk. However, a large scale study is recommended to establish the fact

    o-Iminobenzosemiquinonate and o-Imino-p-methylbenzosemiquinonate Anion Radicals Coupled VO2þ Stabilization

    No full text
    The diamagnetic VO2þ-iminobenzosemiquinonate anion radical (LR IS •-, R = H, Me) complexes, (L-)(VO2þ)(LR IS •-): (L1 -)(VO2þ)(LH IS •-)•3/2MeOH (1•3/2MeOH), (L2 -)(VO2þ)(LH IS •-) (2), and (L2 -)(VO2þ)(LMe IS •-)•1/2 LMe AP (3•1/2 LMe AP), incorporating tridentate monoanionic NNO-donor ligands {L = L1 - or L2 -, L1H = (2-[(phenylpyridin-2-yl-methylene) amino]phenol; L2H = 1-(2-pyridylazo)-2-naphthol; LH IS •- = o-iminobenzosemiquinonate anion radical; LMe IS •- = o-imino-p-methylbenzosemiquinonate anion radical; and LMe AP = o-amino-p-methylphenol} have been isolated and characterized by elemental analyses, IR, mass,NMR, and UV-vis spectra, including the single-crystal X-ray structure determinations of 1•3/2MeOH and 3•1/2 LMe AP. Complexes 1•3/2MeOH, 2, and 3•1/2 LMe AP absorb strongly in the visible region because of intraligand (IL) and ligand-to-metal charge transfers (LMCT). 1•3/2MeOH is luminescent (λext, 333 nm; λem, 522, 553 nm) in frozen dichloromethane- toluene glass at 77 K due to πdiimine f πdiimine* transition. The V-Ophenolato (cis to the VdO) lengths, 1.940(2) and 1.984(2) Å, respectively, in 1•3/2MeOH and 3•1/2 LMe AP are consistent with the VO2þ description. The V-Oiminosemiquinonate (trans to the VdO) lengths, 2.1324(19) in 1•3/2MeOH and 2.083(2) Å in 3•1/2 LMe AP, are expectedly ∼0.20 Å longer due to the trans influence of the VdO bond. Because of the stronger affinity of the paramagnetic VO2þ ion to the LH IS •- or LMe IS •-, the VNiminosemiquinonate lengths, 1.908(2) and 1.921(2) Å, respectively, in 1•3/2MeOH and 3•1/2 LMe AP, are unexpectedly shorter. Density functional theory (DFT) calculations using B3LYP, B3PW91, and PBE1PBE functionals on 1 and 2 have established that the closed shell singlet (CSS) solutions (VO3þ-amidophenolato (LR AP 2-) coordination) of these complexes are unstable with respect to triplet perturbations. But BS (1,1)Ms = 0 (VO2þ-iminobenzosemiquinonate anion radical (LR IS •-) coordination) solutions of these species are stable and reproduce the experimental bond parameters well. Spin density distributions of one electron oxidized cations are consistent with the [(L-)(VO2þ)(LR IQ)]þ descriptions [VO2þ-o-iminobenzoquinone (LR IQ) coordination], and one electron reduced anions are consistent with the [(L•2-)(VO3þ)(LR AP 2-)]- descriptions [VO3þ-amidophenolato (LR AP 2-) coordination], incorporating the diimine anion radical (L1 •2-) or azo anion radical (L2 3-). Although, cations and anions are not isolable, but electro-and spectro-electrochemical experiments have shown that 3þ and 3- ions are more stable than 1þ, 2þ and 1-, 2- ions. In all cases, the reductions occur with simultaneous two electron transfer, may be due to formation of coupled diimine/azo anion radical- VO2þ species as in [(L•2-)(VO2þ)(LR AP 2-)]2

    Orthometalation of Dibenzo[1,2]quinoxaline with Ruthenium(II/III), Osmium(II/III/IV), and Rhodium(III) Ions and Orthometalated [RuNO]<sup>6/7</sup> Derivatives

    Get PDF
    A new family of organometallics of ruthenium­(II/III), osmium­(II/III/IV), and rhodium­(III) ions isolated from C–H activation reactions of dibenzo­[1,2]­quinoxaline (DBQ) using triphenylphosphine, carbonyl, and halides as coligands is reported. The CN–chelate complexes isolated are <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>1</b>), <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>2</b>), <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b>), <i>trans-</i>[Os<sup>II</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>(CO)­Br] (<b>4</b>), and <i>trans-</i>[Rh<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>5</b>). Reaction of <b>1</b> with NO affords <i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]Cl (<b>6</b><sup>+</sup>Cl<sup>–</sup>), isoelectronic to <b>2</b>, with a byproduct, [Ru­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub>] (<b>7</b>). Complexes <b>1</b>–<b>5</b> and <b>6</b><sup>+</sup> were characterized by elemental analyses, mass, IR, NMR, and electron paramagnetic resonance (EPR) spectra including the single-crystal X-ray structure determinations of <b>1</b>–<b>3</b> and <b>5</b>. The Ru<sup>III</sup>–C, Ru<sup>II</sup>–C, Os<sup>III</sup>–C, and Rh<sup>III</sup>–C lengths are 2.049(2), 2.074(3), 2.105(16), and 2.012(3) Å in <b>1</b>, <b>2</b>, <b>3</b>, and <b>5</b>. In cyclic voltammetry, <b>2</b>, <b>3</b>, and <b>4</b> undergo oxidation at 0.59, 0.39, and 0.46 V, versus Fc<sup>+</sup>/Fc couple, to <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>2</b><sup>+</sup>), <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>+</sup>), and <i>trans-</i>[Os<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Br]<sup>+</sup> (<b>4</b><sup>+</sup>) ions. Complex <b>3</b><sup>+</sup> incorporates an Os<sup>IV</sup>(d<sup>4</sup> ion)–C bond. The <b>6</b><sup>+</sup>/<i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b>) reduction couple at −0.65 V is reversible. <b>2</b><sup>+</sup>, <b>3</b><sup>+</sup>, <b>4</b><sup>+</sup> and <b>6</b> were substantiated by spectroelectrochemical measurements, EPR spectra, and density functional theory (DFT) and time-dependent (TD) DFT calculations. The frozen-glass EPR spectrum of the electrogenerated <b>6</b> exhibits hyperfine couplings due to <sup>99,101</sup>Ru and <sup>14</sup>N nuclei. DFT calculations on <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b><sup>Me</sup>), S<sub>t</sub> = 1/2 and <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>Me+</sup>), S<sub>t</sub> = 0, <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>6</b><sup>Me+</sup>), S<sub>t</sub> = 0 and <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b><sup>Me</sup>), S<sub>t</sub> = 1/2, authenticated a significant mixing between d<sub>Os</sub> and π<sub>aromatic</sub>* orbitals, which stabilizes M<sup>II/III/IV</sup>–C bonds and the [RuNO]<sup>6</sup> and [RuNO]<sup>7</sup> states, respectively, in <b>6</b><sup>+</sup> and <b>6</b>, which is defined as a hybrid state of <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(NO<sup>•</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] and <i>trans-</i>[Ru<sup>I</sup>(DBQ)­(NO<sup>+</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] states

    Orthometalation of Dibenzo[1,2]quinoxaline with Ruthenium(II/III), Osmium(II/III/IV), and Rhodium(III) Ions and Orthometalated [RuNO]<sup>6/7</sup> Derivatives

    No full text
    A new family of organometallics of ruthenium­(II/III), osmium­(II/III/IV), and rhodium­(III) ions isolated from C–H activation reactions of dibenzo­[1,2]­quinoxaline (DBQ) using triphenylphosphine, carbonyl, and halides as coligands is reported. The CN–chelate complexes isolated are <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>1</b>), <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>2</b>), <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b>), <i>trans-</i>[Os<sup>II</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>(CO)­Br] (<b>4</b>), and <i>trans-</i>[Rh<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>5</b>). Reaction of <b>1</b> with NO affords <i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]Cl (<b>6</b><sup>+</sup>Cl<sup>–</sup>), isoelectronic to <b>2</b>, with a byproduct, [Ru­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub>] (<b>7</b>). Complexes <b>1</b>–<b>5</b> and <b>6</b><sup>+</sup> were characterized by elemental analyses, mass, IR, NMR, and electron paramagnetic resonance (EPR) spectra including the single-crystal X-ray structure determinations of <b>1</b>–<b>3</b> and <b>5</b>. The Ru<sup>III</sup>–C, Ru<sup>II</sup>–C, Os<sup>III</sup>–C, and Rh<sup>III</sup>–C lengths are 2.049(2), 2.074(3), 2.105(16), and 2.012(3) Å in <b>1</b>, <b>2</b>, <b>3</b>, and <b>5</b>. In cyclic voltammetry, <b>2</b>, <b>3</b>, and <b>4</b> undergo oxidation at 0.59, 0.39, and 0.46 V, versus Fc<sup>+</sup>/Fc couple, to <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>2</b><sup>+</sup>), <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>+</sup>), and <i>trans-</i>[Os<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Br]<sup>+</sup> (<b>4</b><sup>+</sup>) ions. Complex <b>3</b><sup>+</sup> incorporates an Os<sup>IV</sup>(d<sup>4</sup> ion)–C bond. The <b>6</b><sup>+</sup>/<i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b>) reduction couple at −0.65 V is reversible. <b>2</b><sup>+</sup>, <b>3</b><sup>+</sup>, <b>4</b><sup>+</sup> and <b>6</b> were substantiated by spectroelectrochemical measurements, EPR spectra, and density functional theory (DFT) and time-dependent (TD) DFT calculations. The frozen-glass EPR spectrum of the electrogenerated <b>6</b> exhibits hyperfine couplings due to <sup>99,101</sup>Ru and <sup>14</sup>N nuclei. DFT calculations on <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b><sup>Me</sup>), S<sub>t</sub> = 1/2 and <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>Me+</sup>), S<sub>t</sub> = 0, <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>6</b><sup>Me+</sup>), S<sub>t</sub> = 0 and <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b><sup>Me</sup>), S<sub>t</sub> = 1/2, authenticated a significant mixing between d<sub>Os</sub> and π<sub>aromatic</sub>* orbitals, which stabilizes M<sup>II/III/IV</sup>–C bonds and the [RuNO]<sup>6</sup> and [RuNO]<sup>7</sup> states, respectively, in <b>6</b><sup>+</sup> and <b>6</b>, which is defined as a hybrid state of <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(NO<sup>•</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] and <i>trans-</i>[Ru<sup>I</sup>(DBQ)­(NO<sup>+</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] states

    Orthometalation of Dibenzo[1,2]quinoxaline with Ruthenium(II/III), Osmium(II/III/IV), and Rhodium(III) Ions and Orthometalated [RuNO]<sup>6/7</sup> Derivatives

    No full text
    A new family of organometallics of ruthenium­(II/III), osmium­(II/III/IV), and rhodium­(III) ions isolated from C–H activation reactions of dibenzo­[1,2]­quinoxaline (DBQ) using triphenylphosphine, carbonyl, and halides as coligands is reported. The CN–chelate complexes isolated are <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>1</b>), <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>2</b>), <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b>), <i>trans-</i>[Os<sup>II</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>(CO)­Br] (<b>4</b>), and <i>trans-</i>[Rh<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>5</b>). Reaction of <b>1</b> with NO affords <i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]Cl (<b>6</b><sup>+</sup>Cl<sup>–</sup>), isoelectronic to <b>2</b>, with a byproduct, [Ru­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub>] (<b>7</b>). Complexes <b>1</b>–<b>5</b> and <b>6</b><sup>+</sup> were characterized by elemental analyses, mass, IR, NMR, and electron paramagnetic resonance (EPR) spectra including the single-crystal X-ray structure determinations of <b>1</b>–<b>3</b> and <b>5</b>. The Ru<sup>III</sup>–C, Ru<sup>II</sup>–C, Os<sup>III</sup>–C, and Rh<sup>III</sup>–C lengths are 2.049(2), 2.074(3), 2.105(16), and 2.012(3) Å in <b>1</b>, <b>2</b>, <b>3</b>, and <b>5</b>. In cyclic voltammetry, <b>2</b>, <b>3</b>, and <b>4</b> undergo oxidation at 0.59, 0.39, and 0.46 V, versus Fc<sup>+</sup>/Fc couple, to <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>2</b><sup>+</sup>), <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>+</sup>), and <i>trans-</i>[Os<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Br]<sup>+</sup> (<b>4</b><sup>+</sup>) ions. Complex <b>3</b><sup>+</sup> incorporates an Os<sup>IV</sup>(d<sup>4</sup> ion)–C bond. The <b>6</b><sup>+</sup>/<i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b>) reduction couple at −0.65 V is reversible. <b>2</b><sup>+</sup>, <b>3</b><sup>+</sup>, <b>4</b><sup>+</sup> and <b>6</b> were substantiated by spectroelectrochemical measurements, EPR spectra, and density functional theory (DFT) and time-dependent (TD) DFT calculations. The frozen-glass EPR spectrum of the electrogenerated <b>6</b> exhibits hyperfine couplings due to <sup>99,101</sup>Ru and <sup>14</sup>N nuclei. DFT calculations on <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b><sup>Me</sup>), S<sub>t</sub> = 1/2 and <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>Me+</sup>), S<sub>t</sub> = 0, <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>6</b><sup>Me+</sup>), S<sub>t</sub> = 0 and <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b><sup>Me</sup>), S<sub>t</sub> = 1/2, authenticated a significant mixing between d<sub>Os</sub> and π<sub>aromatic</sub>* orbitals, which stabilizes M<sup>II/III/IV</sup>–C bonds and the [RuNO]<sup>6</sup> and [RuNO]<sup>7</sup> states, respectively, in <b>6</b><sup>+</sup> and <b>6</b>, which is defined as a hybrid state of <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(NO<sup>•</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] and <i>trans-</i>[Ru<sup>I</sup>(DBQ)­(NO<sup>+</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] states
    corecore