75 research outputs found
Developing an economic, environmental and agronomic case for the increased use of organic amendments in South Asia
Aggressive fertilizer subsidies throughout South Asia have led to a rapid increase in the use of synthetic nitrogen fertilizers such as urea at the farm level. While this has been successful in increasing yields, significant yield gaps remain between potential and actual farm yields, while unbalanced or over application of fertilizers potentially damages soil and environmental health. This project examined organic amendment (OA) application in India and Sri Lanka on productivity, soil properties and greenhouse gas emissions. In India, poultry, farm-yard manure and vermi-compost were applied to a paddy rice crop, and the potential benefits followed through to a post-rice chickpea crop. In Sri Lanka, we tested the optimal combination of synthetic nitrogen fertilizer rates when using municipal-waste compost in a multi-year maize-soybean rotation. Results at both trial sites saw an increase in crop yields under OA application; in particular chickpea yields from farm-yard manure and after repeated application of municipal-waste compost. However, all OA treatments increased emissions of the greenhouse gases nitrous oxide and methane due to additional nitrogen or carbon availability. Furthermore, the low nutrient content and relatively high cost of the OA’s, particularly the composts, made them uneconomical as nutrient sources compared to conventional fertilizers
Irrigation scheduling with soil gas diffusivity as a decision tool to mitigate N₂O emissions from a urine-affected pasture
Pastures require year-round access to water and in some locations rely on irrigation during dry periods. Currently, there is a dearth of knowledge about the potential for using irrigation to mitigate N₂O emissions. This study aimed to mitigate N₂O losses from intensely managed pastures by adjusting irrigation frequency using soil gas diffusivity (Dp/Do) thresholds. Two irrigation regimes were compared; a standard irrigation treatment based on farmer practice (15 mm applied every 3 days) versus an optimised irrigation treatment where irrigation was applied when soil Dp/Do was ≈0.033 (equivalent to 50% of plant available water). Cow urine was applied at a rate of 700 kg N ha¯¹ to simulate a ruminant urine deposition event. In addition to N₂O fluxes, soil moisture content was monitored hourly, Dp/Do was modelled, and pasture dry matter production was measured. Standard irrigation practices resulted in higher (p = 0.09) cumulative N₂O emissions than the optimised irrigation treatment. Pasture growth rates under treatments did not differ. Denitrification during re-wetting events (irrigation and rain) contributed to soil N₂O emissions. These results warrant further modelling of irrigation management as a mitigation option for N₂O emissions from pasture soils, based on Dp/Do thresholds, rainfall, plant water demands and evapotranspiration
Can seasonal soil N mineralisation trends be leveraged to enhance pasture growth?
SoilNmineralisation is the process bywhich organicN is converted into plant-available forms,while
soil N immobilisation is the transformation of inorganic soil N into organicmatter and microbial biomass, thereafter
becoming bio-unavailable to plants. Mechanistic models can be used to explore the contribution of
mineralised or immobilised N to pasture growth through simulation of plant, soil and environment interactions
driven by management.
Purpose: Our objectiveswere (1) to compare the performance of three agro-ecosystemsmodels (APSIM, DayCent
and DairyMod) in simulating soil N, pasture biomass and soil water using the same experimental data in three
diverse environments (2), to determine if tactical application of N fertiliser in different seasons could be used
to leverage seasonal trends in N mineralisation to influence pasture growth and (3), to explore the sensitivity
of N mineralisation to changes in N fertilisation, cutting frequency and irrigation rate
ESHAP and G-CSF is a superior blood stem cell mobilizing regimen compared to cyclophosphamide 1.5 g m−2 and G-CSF for pre-treated lymphoma patients: a matched pairs analysis of 78 patients
Cyclophosphamide 1.5 g m−2followed by granulocyte colony-stimulating factor (G-CSF) is an effective peripheral blood stem cell (PBSC) mobilizing regimen, but has limited anti-lymphoma activity. We therefore assessed the mobilizing potential of ESHAP (etoposide, ara-C, methylprednisolone and cisplatin), a potent second-line lymphoma regimen followed by G-CSF. The results were compared in 78 patients with relapsed or resistant lymphomas with the use of cyclophosphamide 1.5 g m−2followed by G-CSF in a matched pairs analysis, matching the ESHAP recipients (for predetermined prognostic factors) from a cohort of 178 lymphoma patients mobilized with cyclophosphamide and G-CSF. The total numbers of mononuclear cells collected at apheresis was similar with both regimens but ESHAP plus G-CSF resulted in a significantly higher percentage of CD34+ cells, absolute number of CD34+ cells and GM-CFC (all with P -values < 0.001). The number of patients requiring only one apheresis harvest to achieve a CD34+ cell yield of > 2.0 × 106kg−1was greatly increased in the ESHAP recipients (56/78 vs 17/78, P< 0.001). The total number of progenitor cells collected was not significantly different with the two mobilization regimens because of this higher number of apheresis in the cyclophosphamide group. The proportion of patients who failed to achieve a minimum CD34+ cell target of 1 × 106kg−1with the pooled harvests was less in the ESHAP arm (four patients vs nine patients) despite an increased number of aphereses in the cyclophosphamide recipients. ESHAP plus G-CSF is well tolerated and is an excellent mobilization regimen in patients with pre treated lymphoma. © 2000 Cancer Research Campaig
Global Research Alliance N2O chamber methodology guidelines: considerations for automated flux measurement
Nitrous oxide (N2O) emissions are highly episodic in response to nitrogen additions and changes in soil moisture. Automated gas sampling provides the necessary high temporal frequency to capture these emission events in real time, ensuring the development of accurate N2O inventories and effective mitigation strategies to reduce global warming. This paper outlines the design and operational considerations of automated chamber systems including chamber design and deployment, frequency of gas sampling, and options in terms of the analysis of gas samples. The basic hardware and software requirements for automated chambers are described, including the major challenges and obstacles in their implementation and operation in a wide range of environments. Detailed descriptions are provided of automated systems that have been deployed to assess the impacts of agronomy on the emissions of N2O and other significant greenhouse gases. This information will assist researchers across the world in the successful deployment and operation of automated N2O chamber systems
Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network
In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.</p
Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network
In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem\u27s carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers
Idarubicin dose escalation during consolidation therapy for adult acute myeloid leukemia
Purpose Higher doses of the anthracycline daunorubicin during induction therapy for acute myeloid leukemia (AML) have been shown to improve remission rates and survival. We hypothesized that improvements in outcomes in adult AML may be further achieved by increased anthracycline dose during consolidation therapy. Patients and Methods Patients with AML in complete remission after induction therapy were randomly assigned to receive two cycles of consolidation therapy with cytarabine 100 mg/m daily for 5 days, etoposide 75 mg/m daily for 5 days, and idarubicin 9 mg/m daily for either 2 or 3 days (standard and intensive arms, respectively). The primary end point was leukemia-free survival (LFS). Results Two hundred ninety-three patients 16 to 60 years of age, excluding those with core binding factor AML and acute promyelocytic leukemia, were randomly assigned to treatment groups (146 to the standard arm and 147 to the intensive arm). Both groups were balanced for age, karyotypic risk, and FLT3–internal tandem duplication and NPM1 gene mutations. One hundred twenty patients in the standard arm (82%) and 95 patients in the intensive arm (65%) completed planned consolidation (P, .001). Durations of severe neutropenia and thrombocytopenia were prolonged in the intensive arm, but there were no differences in serious nonhematological toxicities. With a median follow-up of 5.3 years (range, 0.6 to 9.9 years), there was a statistically significant improvement in LFS in the intensive arm compared with the standard arm (3-year LFS, 47% [95% CI, 40% to 56%] v 35% [95% CI, 28% to 44%]; P = .045). At 5 years, the overall survival rate was 57% in the intensive arm and 47% in the standard arm (P = .092). There was no evidence of selective benefit of intensive consolidation within the cytogenetic or FLT3–internal tandem duplication and NPM1 gene mutation subgroups. Conclusion An increased cumulative dose of idarubicin during consolidation therapy for adult AML resulted in improved LFS, without increased nonhematologic toxicity
Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): And randomised, phase 3, open-label, multicentre study
Background: Bortezomib with dexamethasone is a standard treatment option for relapsed or refractory multiple myeloma. Carfilzomib with dexamethasone has shown promising activity in patients in this disease setting. The aim of this study was to compare the combination of carfilzomib and dexamethasone with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma. Methods: In this randomised, phase 3, open-label, multicentre study, patients with relapsed or refractory multiple myeloma who had one to three previous treatments were randomly assigned (1:1) using a blocked randomisation scheme (block size of four) to receive carfilzomib with dexamethasone (carfilzomib group) or bortezomib with dexamethasone (bortezomib group). Randomisation was stratified by previous proteasome inhibitor therapy, previous lines of treatment, International Staging System stage, and planned route of bortezomib administration if randomly assigned to bortezomib with dexamethasone. Patients received treatment until progression with carfilzomib (20 mg/m2 on days 1 and 2 of cycle 1; 56 mg/m2 thereafter; 30 min intravenous infusion) and dexamethasone (20 mg oral or intravenous infusion) or bortezomib (1·3 mg/m2; intravenous bolus or subcutaneous injection) and dexamethasone (20 mg oral or intravenous infusion). The primary endpoint was progression-free survival in the intention-to-treat population. All participants who received at least one dose of study drug were included in the safety analyses. The study is ongoing but not enrolling participants; results for the interim analysis of the primary endpoint are presented. The trial is registered at ClinicalTrials.gov, number NCT01568866. Findings: Between June 20, 2012, and June 30, 2014, 929 patients were randomly assigned (464 to the carfilzomib group; 465 to the bortezomib group). Median follow-up was 11·9 months (IQR 9·3-16·1) in the carfilzomib group and 11·1 months (8·2-14·3) in the bortezomib group. Median progression-free survival was 18·7 months (95% CI 15·6-not estimable) in the carfilzomib group versus 9·4 months (8·4-10·4) in the bortezomib group at a preplanned interim analysis (hazard ratio [HR] 0·53 [95% CI 0·44-0·65]; p<0·0001). On-study death due to adverse events occurred in 18 (4%) of 464 patients in the carfilzomib group and in 16 (3%) of 465 patients in the bortezomib group. Serious adverse events were reported in 224 (48%) of 463 patients in the carfilzomib group and in 162 (36%) of 456 patients in the bortezomib group. The most frequent grade 3 or higher adverse events were anaemia (67 [14%] of 463 patients in the carfilzomib group vs 45 [10%] of 456 patients in the bortezomib group), hypertension (41 [9%] vs 12 [3%]), thrombocytopenia (39 [8%] vs 43 [9%]), and pneumonia (32 [7%] vs 36 [8%]). Interpretation: For patients with relapsed or refractory multiple myeloma, carfilzomib with dexamethasone could be considered in cases in which bortezomib with dexamethasone is a potential treatment option. Funding: Onyx Pharmaceuticals, Inc., an Amgen subsidiary
- …