7,063 research outputs found

    Effect of Pressure on the Activity Coefficients of Au and Other Siderophile Elements in Liquid Fe-Si Alloys

    Get PDF
    Light elements can alloy into the iron cores of terrestrial planetary bodies. It is estimated that the Earths core contains ~10% of a light element, most likely a combination of S, C, Si, and O with Si probably being the most abundant. Si dissolved into Fe metal liquids can have a significant influence on the activity coefficients of siderophile elements, and thus the partitioning behavior of those elements between the core and mantle. Many of these elements have been investigated extensively at ambient pressure, and studies up to 1 GPa are becoming more common, but few have been studied at pressures above this. The formation of the Earths core has been estimated to have formed at pressures between 40-60 GPa, so investigating the effect pressure has on Sis influence on siderophile element partitioning is important for modeling core formation in the Earth and smaller planets. Pressure is well known to influence volumetric properties of metallic and silicate liquids, and oxygen fugacity (e.g., [10,11]), but less is known about its effect on activity coefficients (e.g., [12]). Some activity coefficients depend strongly upon the Si content of Fe liquids, and the concentration of siderophile elements such as P, Sb, and As in the terrestrial mantle is easily influenced by dissolved Si in the core. Thus, isolating the effect of pressure on activity coefficients in general is critical in quantitative analysis of core formation models. In this work, we investigate the effect variable Si content has on the partitioning of Au between Fe metal and silicate melt at 10 GPa and 2373 K, with the intention of comparing the behavior to that already investigated at lower pressures. In addition, P, V, Mn, Ga, Zn, Cd, Sn, W, Pb, and Nb were also measured and could thus be included in the assessment of potential pressure effects

    Integrating remote sensing datasets into ecological modelling: a Bayesian approach

    Get PDF
    Process-based models have been used to simulate 3-dimensional complexities of forest ecosystems and their temporal changes, but their extensive data requirement and complex parameterisation have often limited their use for practical management applications. Increasingly, information retrieved using remote sensing techniques can help in model parameterisation and data collection by providing spatially and temporally resolved forest information. In this paper, we illustrate the potential of Bayesian calibration for integrating such data sources to simulate forest production. As an example, we use the 3-PG model combined with hyperspectral, LiDAR, SAR and field-based data to simulate the growth of UK Corsican pine stands. Hyperspectral, LiDAR and SAR data are used to estimate LAI dynamics, tree height and above ground biomass, respectively, while the Bayesian calibration provides estimates of uncertainties to model parameters and outputs. The Bayesian calibration contrasts with goodness-of-fit approaches, which do not provide uncertainties to parameters and model outputs. Parameters and the data used in the calibration process are presented in the form of probability distributions, reflecting our degree of certainty about them. After the calibration, the distributions are updated. To approximate posterior distributions (of outputs and parameters), a Markov Chain Monte Carlo sampling approach is used (25 000 steps). A sensitivity analysis is also conducted between parameters and outputs. Overall, the results illustrate the potential of a Bayesian framework for truly integrative work, both in the consideration of field-based and remotely sensed datasets available and in estimating parameter and model output uncertainties

    Excavations at the Viking Barrow Cemetery at Heath Wood, Ingleby, Derbyshire

    Get PDF
    The cemetery at Heath Wood, Ingleby, Derbyshire, is the only known Scandinavian cremation cemetery in the British Isles. It comprises fifty-nine barrows, of which about one-third have been excavated on previous occasions, although earlier excavators concluded that some were empty cenotaph mounds. From 1998 to 2000 three barrows were examined. Our investigations have suggested that each of the barrows contained a burial, although not all contain evidence of a pyre. A full report of the 1998-2000 excavations is provided, alongside a summary of the earlier finds. The relationship of Heath Wood to the neighbouring site at Repton is examined, in order to understand its significance for the Scandinavian settlement of the Danelaw. It is concluded that Heath Wood may have been a war cemetery of the Viking Great Army of AD 873-8

    DC utilization of existing LVAC distribution cables

    Get PDF

    Increased energy in stable dry-band arcs due to length compression

    Get PDF
    The occurrence of dry-band arcs on outdoor composite insulators can degrade the polymeric materials' surface and ultimately may lead to insulator failure. The degradation processes are generally considered as aging effects occurring over long periods of time, from years to decades. In this paper, it is shown that if a stable dryband arc is physically compressed in length by external forces, such as electrolyte deformation due to wind or gravity, the arcing activities will become more severe. This in turn, may accelerate the degradation into a short time-frame hazard. A series of experiments are carried out to investigate the electrical characteristics of the arcs as they become compressed. In this case experiments are performed on silicone rod insulators at controlled angles to the horizontal. Rapid aging is observed after such events. Measurements of arcing period, peak current, and arc resistance during the arcing compression process are analyzed. Based on the experiments, a 'Double Sinusoidal Model' is developed to simulate the current-voltage characteristics of dryband arcing during its compression. Both experiment and simulation show that arc power, arc energy and corresponding energy density will dramatically increase if arc compression occurs, which may lead to more rapid and serious damage on composite insulator surfaces than is experienced otherwise. It is suggested that aggressive erosion events may occur in short periods of time within extended test regimes or entire service histories. © 2010 IEEE

    Aging of silicone rubber composite insulators on 400 kV transmission lines

    Get PDF
    • …
    corecore