10,040 research outputs found
Representations of the Weyl group and Wigner functions for SU(3)
Bases for SU(3) irreps are constructed on a space of three-particle tensor
products of two-dimensional harmonic oscillator wave functions. The Weyl group
is represented as the symmetric group of permutations of the particle
coordinates of these space. Wigner functions for SU(3) are expressed as
products of SU(2) Wigner functions and matrix elements of Weyl transformations.
The constructions make explicit use of dual reductive pairs which are shown to
be particularly relevant to problems in optics and quantum interferometry.Comment: : RevTex file, 11 pages with 2 figure
Genotype-environment associations support a mosaic hybrid zone between two tidal marsh birds
Local environmental features can shape hybrid zone dynamics when hybrids are bounded by ecotones or when patchily distributed habitat types lead to a corresponding mosaic of genotypes. We investigated the role of marsh-level characteristics in shaping a hybrid zone between two recently diverged avian taxa – Saltmarsh (Ammodramus caudacutus) and Nelson\u27s (A. nelsoni) sparrows. These species occupy different niches where allopatric, with caudacutus restricted to coastal marshes and nelsoni found in a broader array of wetland and grassland habitats and co-occur in tidal marshes in sympatry. We determined the influence of habitat types on the distribution of pure and hybrid sparrows and assessed the degree of overlap in the ecological niche of each taxon. To do this, we sampled and genotyped 305 sparrows from 34 marshes across the hybrid zone and from adjacent regions. We used linear regression to test for associations between marsh characteristics and the distribution of pure and admixed sparrows. We found a positive correlation between genotype and environmental variables with a patchy distribution of genotypes and habitats across the hybrid zone. Ecological niche models suggest that the hybrid niche was more similar to that of A. nelsoni and habitat suitability was influenced strongly by distance from coastline. Our results support a mosaic model of hybrid zone maintenance, suggesting a role for local environmental features in shaping the distribution and frequency of pure species and hybrids across space
Microwave device investigations Semiannual progress report, 1 Apr. - 1 Oct. 1968
Beam-plasma interactions, cyclotron harmonic instabilities, harmonic generation in beam-plasma system, relativistic electron beam studies, and materials test
Spin excitations in layered antiferromagnetic metals and superconductors
The proximity of antiferromagnetic order in high-temperature superconducting
materials is considered a possible clue to the electronic excitations which
form superconducting pairs. Here we study the transverse and longitudinal spin
excitation spectrum in a one-band model in the pure spin density wave (SDW)
state and in the coexistence state of SDW and the superconductivity. We start
from a Stoner insulator and study the evolution of the spectrum with doping,
including distinct situations with only hole pockets, with only electron
pockets and with pockets of both types. In addition to the usual spin-wave
modes, in the partially gapped cases we find significant weight of low-energy
particle-hole excitations. We discuss the implications of our findings for
neutron scattering experiments and for theories of Cooper-pairing in the
metallic SDW state.Comment: (14 pages, 6 figures
Genotype-environment associations support a mosaic hybrid zone between two tidal marsh birds
Local environmental features can shape hybrid zone dynamics when hybrids are bounded by ecotones or when patchily distributed habitat types lead to a corresponding mosaic of genotypes. We investigated the role of marsh-level characteristics in shaping a hybrid zone between two recently diverged avian taxa – Saltmarsh (Ammodramus caudacutus) and Nelson\u27s (A. nelsoni) sparrows. These species occupy different niches where allopatric, with caudacutus restricted to coastal marshes and nelsoni found in a broader array of wetland and grassland habitats and co-occur in tidal marshes in sympatry. We determined the influence of habitat types on the distribution of pure and hybrid sparrows and assessed the degree of overlap in the ecological niche of each taxon. To do this, we sampled and genotyped 305 sparrows from 34 marshes across the hybrid zone and from adjacent regions. We used linear regression to test for associations between marsh characteristics and the distribution of pure and admixed sparrows. We found a positive correlation between genotype and environmental variables with a patchy distribution of genotypes and habitats across the hybrid zone. Ecological niche models suggest that the hybrid niche was more similar to that of A. nelsoni and habitat suitability was influenced strongly by distance from coastline. Our results support a mosaic model of hybrid zone maintenance, suggesting a role for local environmental features in shaping the distribution and frequency of pure species and hybrids across space
Preliminary design of a Primary Loop Pump Assembly (PLPA), using electromagnetic pumps
A preliminary design study of flight-type dc conduction-permanent magnetic, ac helical induction, and ac linear induction pumps for circulating 883 K (1130 F) NaK at 9.1 kg/sec (20 lb/sec) is described. Various electromagnetic pump geometrics are evaluated against hydraulic performance, and the effects of multiple windings and numbers of pumps per assembly on overall reliability were determined. The methods used in the electrical-hydraulic, stress, and thermal analysis are discussed, and the high temperature electrical materials selected for the application are listed
Collective states of the odd-mass nuclei within the framework of the Interacting Vector Boson Model
A supersymmetric extension of the dynamical symmetry group of
the Interacting Vector Boson Model (IVBM), to the orthosymplectic group
is developed in order to incorporate fermion degrees of
freedom into the nuclear dynamics and to encompass the treatment of odd mass
nuclei. The bosonic sector of the supergroup is used to describe the complex
collective spectra of the neighboring even-even nuclei and is considered as a
core structure of the odd nucleus. The fermionic sector is represented by the
fermion spin group .
The so obtained, new exactly solvable limiting case is applied for the
description of the nuclear collective spectra of odd mass nuclei. The
theoretical predictions for different collective bands in three odd mass
nuclei, namely , and from rare earth region are
compared with the experiment. The transition probabilities for the
and between the states of the ground band are also
studied. The important role of the symplectic structure of the model for the
proper reproduction of the behavior is revealed. The obtained results
reveal the applicability of the models extension.Comment: 18 pages, 8 figure
Thermoelectric and Seebeck coefficients of granular metals
In this work we present a detailed study and derivation of the thermopower
and thermoelectric coefficient of nano-granular metals at large tunneling
conductance between the grains, g_T>> 1. An important criterion for the
performance of a thermoelectric device is the thermodynamic figure of merit
which is derived using the kinetic coefficients of granular metals. All results
are valid at intermediate temperatures, E_c>>T/g_T>\delta, where \delta is the
mean energy level spacing for a single grain and E_c its charging energy. We
show that the electron-electron interaction leads to an increase of the
thermopower with decreasing grain size and discuss our results in the light of
future generation thermoelectric materials for low temperature applications.
The behavior of the figure of merit depending on system parameters like grain
size, tunneling conductance, and temperature is presented.Comment: 27 pages, 10 figures, revtex
Single grain heating due to inelastic cotunneling
We study heating effects of a single metallic quantum dot weakly coupled to
two leads. The dominant mechanism for heating at low temperatures is due to
inelastic electron cotunneling processes. We calculate the grain temperature
profile as a function of grain parameters, bias voltage, and time and show that
for nanoscale size grains the heating effects are pronounced and easily
measurable in experiments.Comment: 4 pages, 3 figures, revtex4, extended and corrected versio
- …
