11,578 research outputs found
Reversable heat flow through the carbon nanotube junctions
Microscopic mechanisms of externally controlled reversable heat flow through
the carbon nanotube junctions (NJ) are studied theoretically. Our model
suggests that the heat is transfered along the tube section by
electrons () and holes () moving ballistically in either in parallel or
in opposite directions and accelerated by the bias source-drain voltage (Peltier effect). We compute the Seebeck coefficient , electric
and thermal conductivities and find that their magnitudes
strongly depend on and . The sign reversal of
versus the sign of formerly observed experimentally is interpreted
in this work in terms of so-called chiral tunneling phenomena (Klein paradox)
The erosion/corrosion of small superalloy turbine rotors operating in the effluent of a PFB coal combustor
Superalloy turbine rotors in a single stage turbine with 6 percent partial admittance were operated in the effluent of a pressurized fluidized bed coal combustor for up to 164 hours. Total mass flow was 300 kg/hr and average particulate loadings ranged from 600 to 2800 ppm for several coal/sorbent combinations. A 5.5 atm turbine inlet gas pressure and inlet gas temperatures from 700 to 800 C yielded absolute gas velocities at the stator exit of about 500 m/s. The angular rotation speed (40,000 rpm) of the six inch diameter rotors was equivalent to a tip speed of about 300 m/s, and average gas velocities relative to the rotating surface ranged from 260 to 330 m/s at mean radius. The rotor erosion pattern reflects heavy particle separation with severe (5 to 500 cm/yr) erosion at the leading edge, pressure side center, and suction side trailing edge at the tip. The erosion distribution pattern provides a spectrum of erosion/oxidation/deposition as a function of blade position. This spectrum includes enhanced oxidation (10 to 100 x air), mixed oxides in exposed depletion zones, sulfur rich oxides in deposition zones, and rugged areas of erosive oxide removal
Prediction of unsteady aerodynamic loadings caused by leading edge and trailing edge control surface motions in subsonic compressible flow: Analysis and results
A theoretical analysis and computer program was developed for the prediction of unsteady lifting surface loadings caused by motions of leading edge and trailing edge control surfaces having sealed gaps. The final form of the downwash integral equation was formulated by isolating the singularities from the nonsingular terms and using a preferred solution process to remove and evaluate the downwash discontinuities in a systematic manner. Comparisons of theoretical and experimental pressure data are made for several control surface configurations. The comparisons indicate that reasonably accurate theoretical pressure distributions and generalized forces may be obtained for a wide variety of control surface configurations. Spanwise symmetry or antisymmetry of motion, and up to six control surfaces on each half span can be accommodated
How fast does the stationary distribution of the Markov chain modelling EAs concentrate on the homogeneous populations for small mutation rate?
The state space of the Markov chain modelling an evolutionary algorithm
is quite large especially if the population space and the search space are
large. I shell introduce an appropriate notion of "coarse graining" for
such Markov chains. Indeed, from the mathematical point of view, this can
be called a quotient of a Markov chain by an equivalence relation over the
state space. The newly obtained Markov chain has a significantly smaller
state space and it\u27s stationary distribution is "coherent" with the
initial large chain. Although the transition probabilities of the
coarse-grained Markov chain are defined in terms of the stationary
distribution of the original big chain, in some cases it is possible to
deduce interesting information about the stationary distribution of the
original chain in terms of the quatient chain. I will demonstrate how
this method works. I shell also present some simple results and open
questions
Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces
The tunnel photocurrent between a gold surface and a free-standing
semiconducting thin film excited from the rear by above bandgap light has been
measured as a function of applied bias, tunnel distance and excitation light
power. The results are compared with the predictions of a model which includes
the bias dependence of the tunnel barrier height and the bias-induced decrease
of surface recombination velocity. It is found that i) the tunnel photocurrent
from the conduction band dominates that from surface states. ii) At large
tunnel distance the exponential bias dependence of the current is explained by
that of the tunnel barrier height, while at small distance the change of
surface recombination velocity is dominant
An analysis of the XOR dynamic problem generator based on the dynamical system
This is the post-print version of the article - Copyright @ 2010 Springer-VerlagIn this paper, we use the exact model (or dynamical system approach) to describe the standard evolutionary algorithm (EA) as a discrete dynamical system for dynamic optimization problems (DOPs). Based on this dynamical system model, we analyse the properties of the XOR DOP Generator, which has been widely used by researchers to create DOPs from any binary encoded problem. DOPs generated by this generator are described as DOPs with permutation, where the fitness vector is changed according to a permutation matrix. Some properties of DOPs with permutation are analyzed, which allows explaining some behaviors observed in experimental results. The analysis of the properties of problems created by the XOR DOP Generator is important to understand the results obtained in experiments with this generator and to analyze the similarity of such problems to real world DOPs.This work was supported by Brazil FAPESP under Grant 04/04289-6 and by UK EPSRC under Grant EP/E060722/2
An algebraic approach to problems with polynomial Hamiltonians on Euclidean spaces
Explicit expressions are given for the actions and radial matrix elements of
basic radial observables on multi-dimensional spaces in a continuous sequence
of orthonormal bases for unitary SU(1,1) irreps. Explicit expressions are also
given for SO(N)-reduced matrix elements of basic orbital observables. These
developments make it possible to determine the matrix elements of polynomial
and a other Hamiltonians analytically, to within SO(N) Clebsch-Gordan
coefficients, and to select an optimal basis for a particular problem such that
the expansion of eigenfunctions is most rapidly convergent.Comment: 19 pages, 8 figure
Large-Amplitude, Pair-Creating Oscillations in Pulsar and Black Hole Magnetospheres
A time-dependent model for pair creation in a pulsar magnetosphere is
developed. It is argued that the parallel electric field that develops in a
charge-starved region (a gap) of a pulsar magnetosphere oscillates with large
amplitude. Electrons and positrons are accelerated periodically and the
amplitude of the oscillations is assumed large enough to cause creation of
upgoing and downgoing pairs at different phases of the oscillation. With a
charge-starved initial condition, we find that the oscillations result in
bursts of pair creation in which the pair density rises exponentially with
time. The pair density saturates at , where is the parallel electric field in the
charge-starved initial state, and is the Lorentz factor for
effec tive pair creation. The frequency of oscillations following the pair
creation burst is given roughly by . A positive feedback keeps the system stable, such that the average pair
creation rate balances the loss rate due to pairs escaping the magnetosphere.Comment: 21 pages, 6 figures, ApJ submitte
The quadrupole collective model from a Cartan-Weyl perspective
The matrix elements of the quadrupole variables and canonic conjugate
momenta, emerging from collective nuclear models are calculated within a
basis. Using a harmonic oscillator implementation of the
SU(1,1) degree of freedom, it can be shown that the matrix elements of the
quadrupole phonon creation and annihilation operators can be calculated in a
pure algebraic way, making use of an intermediate state method.Comment: Special issue of journal of physics for the QTS5 conferenc
- …