6,445 research outputs found

    USSR Space Life Sciences Digest, issue 3

    Get PDF
    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given

    Soft triaxial roto-vibrational motion in the vicinity of γ=π/6\gamma=\pi/6

    Full text link
    A solution of the Bohr collective hamiltonian for the β\beta-soft, γ\gamma-soft triaxial rotor with γπ/6\gamma \sim \pi/6 is presented making use of a harmonic potential in γ\gamma and Coulomb-like and Kratzer-like potentials in β\beta. It is shown that, while the γ\gamma-angular part in the present case gives rise to a straightforward extension of the rigid triaxial rotor energy in which an additive harmonic term appears, the inclusion of the β\beta part results instead in a non-trivial expression for the spectrum. The negative anharmonicities of the energy levels with respect to a simple rigid model are in qualitative agreement with general trends in the experimental data.Comment: 4 pages, 2 figures, accepted in Phys.Rev.

    Solitons near avoided mode crossings in χ(2) nanowaveguides

    Get PDF
    We present a model for χ(2)\chi^{(2)} waveguides accounting for three modes, two of which make an avoided crossing at the second harmonic wavelength. We introduce two linearly coupled pure modes and adjust the coupling to replicate the waveguide dispersion near the avoided crossing. Analysis of the nonlinear system reveals continuous wave (CW) solutions across much of the parameter-space and prevalence of its modulational instability. We also predict the existence of the avoided-crossing solitons, and study peculiarities of their dynamics and spectral properties, which include formation of a pedestal in the pulse tails and associated pronounced spectral peaks. Mapping these solitons onto the linear dispersion diagrams, we make connections between their existence and CW existence and stability. We also simulate the two-color soliton generation from a single frequency pump pulse to back up its formation and stability properties.Comment: 10 pages, 6 figure

    Raman solitons in waveguides with simultaneous quadratic and Kerr nonlinearities

    Get PDF
    We analyse Raman-induced self-frequency shift in two-component solitons supported by both quadratic and cubic nonlinearities. Treating Raman terms as a perturbation, we derive expressions for soliton velocity and frequency shifts of the fundamental frequency and second harmonic soliton components. We find these predictions compare well with simulations of soliton propagation. We also show that Raman shift can cause two-component solitons to approach the boundary of their own existence and subsequently trigger soliton instabilities. In some cases these instabilities are accompanied by an almost complete transfer of power to the second harmonic, and emergence of a single-component Kerr solitonic pulse.Comment: 10 pages, 5 figure

    Hydrogen Flare Stack Diffusion Flames - Low and High Flow Instabilities, Burning Rates, Dilution Limits, Temperatures, and Wind Effects

    Get PDF
    Combustion characteristics and safety factors for hydrogen diffusion flames in flare stack operation

    On a general analytical formula for U_q(su(3))-Clebsch-Gordan coefficients

    Full text link
    We present the projection operator method in combination with the Wigner-Racah calculus of the subalgebra U_q(su(2)) for calculation of Clebsch-Gordan coefficients (CGCs) of the quantum algebra U_q(su(3)). The key formulas of the method are couplings of the tensor and projection operators and also a tensor form for the projection operator of U_q(su(3)). We obtain a very compact general analytical formula for the U_q(su(3)) CGCs in terms of the U_q(su(2)) Wigner 3nj-symbols.Comment: 9 pages, LaTeX; to be published in Yad. Fiz. (Phys. Atomic Nuclei), (2001

    Radiation mapping on Spacelab 1: Experiment no. INS006

    Get PDF
    The first attempt at mapping the radiation environment inside Spacelab is described. Measurements were made by a set of passive radiation detectors distributed throughout the volume inside the Spacelab 1 module, in the access tunnel and outside on the pallet. Measurements of the low linear energy transfer (LET) component obtained from the TLD thermoluminescent detectors (TLD) ranged from 92 to 134 mrad, yielding an average low LET dose rate of 10.0 mrads/day inside the module. Because of the higher inclination orbit, substantial fluxes of highly ionizing (HZE particles) high charge and energy galactic cosmic rays were observed for the first time on an STS flight, yielding an overall average mission dose-equivalent of 295 mrem, or 29.5 mrem/day, which is about three times higher than that measured on previous STS missions. Little correlation is found between measured average dose rates or HZE fluences and the estimates shielding throughout the volume of the module

    Configuration mixing in 188^{188}Pb : band structure and electromagnetic properties

    Full text link
    In the present paper, we carry out a detailed analysis of the presence and mixing of various families of collective bands in 188^{188}Pb. Making use of the interacting boson model, we construct a particular intermediate basis that can be associated with the unperturbed bands used in more phenomenological studies. We use the E2 decay to construct a set of collective bands and discuss in detail the B(E2)-values. We also perform an analysis of these theoretical results (Q, B(E2)) to deduce an intrinsic quadrupole moment and the associated quadrupole deformation parameter, using an axially deformed rotor model.Comment: submitted to pr

    Richardson-Gaudin integrability in the contraction limit of the quasispin

    Full text link
    Background: The reduced, level-independent, Bardeen-Cooper-Schrieffer Hamiltonian is exactly diagonalizable by means of a Bethe Ansatz wavefunction, provided the free variables in the Ansatz are the solutions of the set of Richardson-Gaudin equations. On the one side, the Bethe Ansatz is a simple product state of generalised pair operators. On the other hand, the Richardson-Gaudin equations are strongly coupled in a non-linear way, making them prone to singularities. Unfortunately, it is non-trivial to give a clear physical interpretation to the Richardson-Gaudin variables because no physical operator is directly related to the individual variables. Purpose: The purpose of this paper is to shed more light on the critical behavior of the Richardson-Gaudin equations, and how this is related to the product wave structure of the Bethe Ansatz. Method: A pseudo-deformation of the quasi-spin algebra is introduced, leading towards a Heisenberg-Weyl algebra in the contraction limit of the deformation parameter. This enables an adiabatic connection of the exact Bethe Ansatz eigenstates with pure bosonic multiphonon states. The physical interpretation of this approach is an adiabatic suppression of the Pauli exclusion principle. Results: The method is applied to a so-called "picket-fence" model for the BCS Hamiltonian, displaying a typical critical behavior in the Richardson-Gaudin variables. It was observed that the associated bosonic multiphonon states change collective nature at the critical interaction strengths of the Richardson-Gaudin equations. Conclusions: The Pauli exclusion principle is the main responsible for the critical behavior of the Richardson-Gaudin equations, which can be suppressed by means of a pseudo deformation of the quasispin algebra.Comment: PACS 02.30.Ik, 21.10.Re, 21.60.Ce, 74.20.F
    corecore