188 research outputs found

    Using Literacy Centers To Support A Balanced Literacy Program In A Pre-K Classroom

    Get PDF
    The question addressed in this research project was, how can using literacy centers support a balanced literacy approach in a Pre-K classroom? The author’s motivation for completeing this capstone was to learn more about balanced literacy and how the use of balanced literacy could support her student’s learning. This capstone describes, in detail, what balanced literacy is, what literacy centers are , and how to use both to create an engaging learning environment for Pre-K students. It also provides guidelines for how to manage literacy centers both in organization of materials and the literacy center time block. Finally, the capstone provides lesson planning templates and ideas for curriculum to use in each literacy center

    CRITICAL THINKING AND INTERDISCIPLINARY DEVELOPMENT FOSTERING CRITICAL THINKING IN AN INTERDISCIPLINARY WELLNESS COACHING ACADEMIC PROGRAM

    Get PDF
    Critical thinking skills are seen as increasingly important in meeting the complex demands of the global workplace (Pithers, 2000). Developing curriculum that crosses and integrates specific disciplines is one important mechanism that institutions of higher learning can use to foster higher-order critical thinking skills among their students (Behar-Horenstein & Niu, 2011; Nosich, 2009). This paper explores the interdisciplinary curriculum development process to develop a minor in Wellness Coaching, where critical thinking was a unifying core component. The steps used in the curriculum development process are described, and implications for interdisciplinary programs focusing on critical thinking skills are examined

    Changes in glacier surface cover on Baltoro glacier, Karakoram, north Pakistan, 2001–2012

    Get PDF
    The presence of supraglacial debris on glaciers in the Himalaya-Karakoram affects the ablation rate of these glaciers and their response to climatic change. To understand how supraglacial debris distribution and associated surface features vary spatially and temporally, geomorphological mapping was undertaken on Baltoro Glacier, Karakoram, for three time-separated images between 2001–2012. Debris is supplied to the glacier system through frequent but small landslides at the glacier margin that form lateral and medial moraines and less frequent but higher volume rockfall events which are more lobate and often discontinuous in form. Debris on the glacier surface is identified as a series of distinct lithological units which merge downglacier of the convergence area between the Godwin-Austen and Baltoro South tributary glaciers. Debris distribution varies as a result of complex interaction between tributary glaciers and the main glacier tongue, complicated further by surge events on some tributary glaciers. Glacier flow dynamics mainly controls the evolution of a supraglacial debris layer. Identifying such spatial variability in debris rock type and temporal variability in debris distribution has implications for glacier ablation rate, affecting glacier surface energy balance. Accordingly, spatial and temporal variation in supraglacial debris should be considered when determining mass balance for these glaciers through time

    Instruments and Methods:hot-water borehole drilling at a high-elevation debris-covered glacier

    Get PDF
    While hot-water drilling is a well-established technique used to access the subsurface of ice masses, drilling into high-elevation (≳ 4000 m a.s.l.) debris-covered glaciers faces specific challenges. First, restricted transport capacity limits individual equipment items to a volume and mass that can be slung by small helicopters. Second, low atmospheric oxygen and pressure reduces the effectiveness of combustion, limiting a system's ability to pump and heat water. Third, thick supraglacial debris, which is both highly uneven and unstable, inhibits direct access to the ice surface, hinders the manoeuvring of equipment and limits secure sites for equipment placement. Fourth, englacial debris can slow the drilling rate such that continued drilling becomes impracticable and/or boreholes deviate substantially from vertical. Because of these challenges, field-based englacial and subglacial data required to calibrate numerical models of high-elevation debris-covered glaciers are scarce or absent. Here, we summarise our experiences of hot-water drilling over two field seasons (2017–2018) at the debris-covered Khumbu Glacier, Nepal, where we melted 27 boreholes up to 192 m length, at elevations between 4900 and 5200 m a.s.l. We describe the drilling equipment and operation, evaluate the effectiveness of our approach and suggest equipment and methodological adaptations for future use

    Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012

    Get PDF
    Distribution of supraglacial debris in a glacier system varies spatially and temporally due to differing rates of debris input, transport and deposition. Supraglacial debris distribution governs the thickness of a supraglacial debris layer, an important control on the amount of ablation that occurs under such a debris layer. Characterising supraglacial debris layer thickness on a glacier is therefore key to calculating ablation across a glacier surface. The spatial pattern of debris thickness on Baltoro Glacier has previously been calculated for one discrete point in time (2004) using satellite thermal data and an empirically based relationship between supraglacial debris layer thickness and debris surface temperature identified in the field. Here, the same empirically based relationship was applied to two further datasets (2001, 2012) to calculate debris layer thickness across Baltoro Glacier for three discrete points over an 11-year period (2001, 2004, 2012). Surface velocity and sediment flux were also calculated, as well as debris thickness change between periods. Using these outputs, alongside geomorphological maps of Baltoro Glacier produced for 2001, 2004 and 2012, spatiotemporal changes in debris distribution for a sub-decadal timescale were investigated. Sediment flux remained constant throughout the 11-year period. The greatest changes in debris thickness occurred along medial moraines, the locations of mass movement deposition and areas of interaction between tributary glaciers and the main glacier tongue. The study confirms the occurrence of spatiotemporal changes in supraglacial debris layer thickness on sub-decadal timescales, independent of variation in surface velocity. Instead, variation in rates of debris distribution are primarily attributed to frequency and magnitude of mass movement events over decadal timescales, with climate, regional uplift and erosion rates expected to control debris inputs over centurial to millennial timescales. Inclusion of such spatiotemporal variations in debris thickness in distributed surface energy balance models would increase the accuracy of calculated ablation, leading to a more accurate simulation of glacier mass balance through time, and greater precision in quantification of the response of debris-covered glaciers to climatic change

    Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand

    Get PDF
    Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length of the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1 km (24%) and the Rakaia Glacier of 9.3 km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (−14% and −18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty
    • …
    corecore