11,677 research outputs found

    Towards Loop Quantum Gravity without the time gauge

    Full text link
    The Hamiltonian formulation of the Holst action is reviewed and it is provided a solution of second-class constraints corresponding to a generic local Lorentz frame. Within this scheme the form of rotation constraints can be reduced to a Gauss-like one by a proper generalization of Ashtekar-Barbero-Immirzi connections. This result emphasizes that the Loop Quantum Gravity quantization procedure can be applied when the time-gauge condition does not stand.Comment: 5 pages, accepted for publication in Phys. Rev. Let

    The century of the incomplete revolution: searching for general relativistic quantum field theory

    Get PDF
    In fundamental physics, this has been the century of quantum mechanics and general relativity. It has also been the century of the long search for a conceptual framework capable of embracing the astonishing features of the world that have been revealed by these two ``first pieces of a conceptual revolution''. I discuss the general requirements on the mathematics and some specific developments towards the construction of such a framework. Examples of covariant constructions of (simple) generally relativistic quantum field theories have been obtained as topological quantum field theories, in nonperturbative zero-dimensional string theory and its higher dimensional generalizations, and as spin foam models. A canonical construction of a general relativistic quantum field theory is provided by loop quantum gravity. Remarkably, all these diverse approaches have turn out to be related, suggesting an intriguing general picture of general relativistic quantum physics.Comment: To appear in the Journal of Mathematical Physics 2000 Special Issu

    Averaged null energy condition in Loop Quantum Cosmology

    Full text link
    Wormhole and time machine are very interesting objects in general relativity. However, they need exotic matters which are impossible in classical level to support them. But if we introduce the quantum effects of gravity into the stress-energy tensor, these peculiar objects can be constructed self-consistently. Fortunately, loop quantum cosmology (LQC) has the potential to serve as a bridge connecting the classical theory and quantum gravity. Therefore it provides a simple way for the study of quantum effect in the semiclassical case. As is well known, loop quantum cosmology is very successful to deal with the behavior of early universe. In the early stage, if taken the quantum effect into consideration, inflation is natural because of the violation of every kind of local energy conditions. Similar to the inflationary universe, the violation of the averaged null energy condition is the necessary condition for the traversable wormholes. In this paper, we investigate the averaged null energy condition in LQC in the framework of effective Hamiltonian, and find out that LQC do violate the averaged null energy condition in the massless scalar field coupled model.Comment: 5 page

    Strings as perturbations of evolving spin-networks

    Full text link
    A connection between non-perturbative formulations of quantum gravity and perturbative string theory is exhibited, based on a formulation of the non-perturbative dynamics due to Markopoulou. In this formulation the dynamics of spin network states and their generalizations is described in terms of histories which have discrete analogues of the causal structure and many fingered time of Lorentzian spacetimes. Perturbations of these histories turn out to be described in terms of spin systems defined on 2-dimensional timelike surfaces embedded in the discrete spacetime. When the history has a classical limit which is Minkowski spacetime, the action of the perturbation theory is given to leading order by the spacetime area of the surface, as in bosonic string theory. This map between a non-perturbative formulation of quantum gravity and a 1+1 dimensional theory generalizes to a large class of theories in which the group SU(2) is extended to any quantum group or supergroup. It is argued that a necessary condition for the non-perturbative theory to have a good classical limit is that the resulting 1+1 dimensional theory defines a consistent and stable perturbative string theory.Comment: Latex, 18 pages, no figure

    Black hole entropy: inside or out?

    Full text link
    A trialogue. Ted, Don, and Carlo consider the nature of black hole entropy. Ted and Carlo support the idea that this entropy measures in some sense ``the number of black hole microstates that can communicate with the outside world.'' Don is critical of this approach, and discussion ensues, focusing on the question of whether the first law of black hole thermodynamics can be understood from a statistical mechanics point of view.Comment: 42 pages, contribution to proceedings of Peyresq

    Physical effects of the Immirzi parameter

    Full text link
    The Immirzi parameter is a constant appearing in the general relativity action used as a starting point for the loop quantization of gravity. The parameter is commonly believed not to show up in the equations of motion, because it appears in front of a term in the action that vanishes on shell. We show that in the presence of fermions, instead, the Immirzi term in the action does not vanish on shell, and the Immirzi parameter does appear in the equations of motion. It determines the coupling constant of a four-fermion interaction. Therefore the Immirzi parameter leads to effects that are observable in principle, even independently from nonperturbative quantum gravity.Comment: 3 pages. Substantial revision from the first versio

    Numerical Analysis of the Big Bounce in Loop Quantum Cosmology

    Full text link
    Loop quantum cosmology homogeneous models with a massless scalar field show that the big-bang singularity can be replaced by a big quantum bounce. To gain further insight on the nature of this bounce, we study the semi-discrete loop quantum gravity Hamiltonian constraint equation from the point of view of numerical analysis. For illustration purposes, we establish a numerical analogy between the quantum bounces and reflections in finite difference discretizations of wave equations triggered by the use of nonuniform grids or, equivalently, reflections found when solving numerically wave equations with varying coefficients. We show that the bounce is closely related to the method for the temporal update of the system and demonstrate that explicit time-updates in general yield bounces. Finally, we present an example of an implicit time-update devoid of bounces and show back-in-time, deterministic evolutions that reach and partially jump over the big-bang singularity.Comment: 5 pages, 3 figures, new title, replaced with version accepted for publicatio

    On the geometry of loop quantum gravity on a graph

    Full text link
    We discuss the meaning of geometrical constructions associated to loop quantum gravity states on a graph. In particular, we discuss the "twisted geometries" and derive a simple relation between these and Regge geometries.Comment: 6 pages, 1 figure. v2: some typos corrected, references update

    Local spinfoam expansion in loop quantum cosmology

    Full text link
    The quantum dynamics of the flat Friedmann-Lemaitre-Robertson-Walker and Bianchi I models defined by loop quantum cosmology have recently been translated into a spinfoam-like formalism. The construction is facilitated by the presence of a massless scalar field which is used as an internal clock. The implicit integration over the matter variable leads to a nonlocal spinfoam amplitude. In this paper we consider a vacuum Bianchi I universe and show that by choosing an appropriate regulator a spinfoam expansion can be obtained without selecting a clock variable and that the resulting spinfoam amplitude is local.Comment: 12 page

    Modifications in the Spectrum of Primordial Gravitational Waves Induced by Instantonic Fluctuations

    Full text link
    Vacuum to vacuum instantonic transitions modify the power spectrum of primordial gravitational waves. We evaluate the new form of the power spectrum for ordinary gravity as well as the parity violation induced in the spectrum by a modification of General Relativity known as Holst term and we outline the possible experimental consequences.Comment: V1: 8 pages. V2: 8 pages, some points clarified, typos corrected, some references added, final result unchanged. V3: 8 pages, title changed, presentation improved, discussion of phenomenological consequences added, comments very welcome. V4: Discussion further improved, comments very very welcom
    corecore