21 research outputs found

    Conception et réalisation de cellules photoacoustiques miniaturisées pour la détection de traces de gaz

    No full text
    Photoacoustic cells are optical sensors based on the absorption of photons by gas molecules. The pressure wave created by gas relaxation is proportional to the trace gas concentration. Furthermore the photoacoustic signal is inversely proportional to the cell volume. Thus cell miniaturization can improve performances and enables the integration of the cell on a lab-on-a-chip and its development for detection of greenhouse or toxic gases. This work consists in designing, realizing and characterizing miniaturized photoacoustic cells, based on the differential Helmholtz resonator (DHR) principle. In a first phase, modeling by the finite element method of millimeter scale cells has shown that the miniaturization of this type of resonator should effectively improve the detection limit. Thus, the ambitious realization of a DHR cell on silicon by the use of microelectronic techniques has been attempted. However, this extreme miniaturization direction encountered design and fabrication difficulties which made the produced devices unusable. To overcome these difficulties, a miniaturization alternative, at the centimeter scale, using commercial MEMS microphones, has been carried out. Three cells have been built by different methods and have been tested for methane detection. The last cell generation can detect around 100 ppb of methane with a commercial interband cascade laser at 3.357 μm of wavelength and with 2.4 mW of optical power and an integration time of 1 second. Finally, to anticipate the next cell generation fabrication, a geometry optimization has been performed by simulation. This optimization shows that a 43 % signal improvement, compared to the most performant cell already built.Les cellules photoacoustiques sont des capteurs optiques qui utilisent l'absorption des photons par des molécules de gaz pour générer une onde de pression proportionnelle à leur concentration. Le signal photoacoustique est également inversement proportionnel au volume de la cellule. La miniaturisation de la cuve permet une amélioration des performances et le développement en masse du capteur de type laboratoire sur puce pour la surveillance des gaz à effet de serre ou la détection de gaz toxiques. Le travail de cette thèse consiste en la conception, la réalisation et la caractérisation de cellules photoacoustiques résonantes différentielles d’Helmholtz (DHR) miniaturisées. Dans un premier temps, des simulations par la méthode des éléments finis de cellules à l'échelle millimétrique ont permis de montrer que la miniaturisation de ce type de résonateur est une voie prometteuse. Aussi, la réalisation ambitieuse d’une cellule DHR sur silicium a été engagée en utilisant les techniques de la microélectronique. Cependant, cette voie de miniaturisation extrême s'est heurtée à des difficultés de réalisation, qui n'ont pas permis d'obtenir des dispositifs fonctionnels. Une alternative de miniaturisation, à l'échelle centimétrique, utilisant des microphones MEMS du commerce, a donc été engagée. Trois cellules, fabriquées par différentes méthodes, ont été réalisées et testées pour la détection de méthane. La dernière génération a permis la détection d'environ 100 ppb de méthane avec un laser à cascade interbande commercial à 3,357 μm de longueur d’onde et de 2,4 mW de puissance optique ainsi qu’un temps d’intégration de 1 seconde. Pour préparer la prochaine génération de cellules, l'optimisation de la géométrie a été effectuée par simulation. Cette optimisation permet d'envisager une augmentation de 43 % du signal par rapport à la cellule la plus performante

    Design and realization of miniaturized photoacoustic cells for trace gas detection

    No full text
    Les cellules photoacoustiques sont des capteurs optiques qui utilisent l'absorption des photons par des molécules de gaz pour générer une onde de pression proportionnelle à leur concentration. Le signal photoacoustique est également inversement proportionnel au volume de la cellule. La miniaturisation de la cuve permet donc l’amélioration des performances du capteur. Le travail de cette thèse consiste en la conception, la réalisation et la caractérisation de cellules photoacoustiques résonantes différentielles d’Helmholtz (DHR) miniaturisées. Dans un premier temps, des simulations par la méthode des éléments finis de cellules à l'échelle millimétrique ont permis de montrer que la miniaturisation de ce type de résonateur est une voie prometteuse. Aussi, la réalisation ambitieuse d’une cellule DHR sur silicium a été engagée en utilisant les techniques de la microélectronique. Cependant, cette voie de miniaturisation extrême s'est heurtée à des difficultés de réalisation, qui n'ont pas permis d'obtenir des dispositifs fonctionnels. Une alternative de miniaturisation, à l'échelle centimétrique, utilisant des microphones MEMS du commerce, a donc été engagée. Trois cellules fabriquées par différentes méthodes ont été réalisées et testées pour la détection de méthane. La dernière génération a permis la détection d'environ 100 ppb de méthane avec un laser à cascade interbande commercial à 3,357 µm de longueur d’onde. Pour préparer la prochaine génération de cellules, l'optimisation de la géométrie a été effectuée par simulation. Cette optimisation permet d'envisager une augmentation de 43 % du signal par rapport à la cellule la plus performante.Photoacoustic cells are optical sensors based on the absorption of photons by gas molecules. The pressure wave created by gas relaxation is proportional to the trace gas concentration. Furthermore the photoacoustic signal is inversely proportional to the cell volume. Thus cell miniaturization enables performances improvements. This work consists in designing, realizing and characterizing miniaturized photoacoustic cells, based on the differential Helmholtz resonator (DHR) principle. In a first phase, modeling by the finite element method of millimeter scale cells has shown that the miniaturization of this type of resonator should effectively improve the detection limit. Thus, the ambitious realization of a DHR cell on silicon by the use of microelectronic techniques has been attempted. However, this extreme miniaturization direction encountered design and fabrication difficulties which made the produced devices unusable. To overcome these difficulties, a miniaturization alternative, at the centimeter scale, using commercial MEMS microphones, has been carried out. Three cells have been built by different methods and have been tested for methane detection. The last cell generation can detect around 100 ppb of methane with a commercial interband cascade laser at 3.357 µm of wavelength. Finally, to anticipate the next cell generation fabrication, a geometry optimization has been performed by simulation. This optimization shows that a 43 % signal improvement, compared to the most performant cell already built

    Conception et réalisation de cellules photoacoustiques miniaturisées pour la détection de traces de gaz

    No full text
    Photoacoustic cells are optical sensors based on the absorption of photons by gas molecules. The pressure wave created by gas relaxation is proportional to the trace gas concentration. Furthermore the photoacoustic signal is inversely proportional to the cell volume. Thus cell miniaturization can improve performances and enables the integration of the cell on a lab-on-a-chip and its development for detection of greenhouse or toxic gases. This work consists in designing, realizing and characterizing miniaturized photoacoustic cells, based on the differential Helmholtz resonator (DHR) principle. In a first phase, modeling by the finite element method of millimeter scale cells has shown that the miniaturization of this type of resonator should effectively improve the detection limit. Thus, the ambitious realization of a DHR cell on silicon by the use of microelectronic techniques has been attempted. However, this extreme miniaturization direction encountered design and fabrication difficulties which made the produced devices unusable. To overcome these difficulties, a miniaturization alternative, at the centimeter scale, using commercial MEMS microphones, has been carried out. Three cells have been built by different methods and have been tested for methane detection. The last cell generation can detect around 100 ppb of methane with a commercial interband cascade laser at 3.357 μm of wavelength and with 2.4 mW of optical power and an integration time of 1 second. Finally, to anticipate the next cell generation fabrication, a geometry optimization has been performed by simulation. This optimization shows that a 43 % signal improvement, compared to the most performant cell already built.Les cellules photoacoustiques sont des capteurs optiques qui utilisent l'absorption des photons par des molécules de gaz pour générer une onde de pression proportionnelle à leur concentration. Le signal photoacoustique est également inversement proportionnel au volume de la cellule. La miniaturisation de la cuve permet une amélioration des performances et le développement en masse du capteur de type laboratoire sur puce pour la surveillance des gaz à effet de serre ou la détection de gaz toxiques. Le travail de cette thèse consiste en la conception, la réalisation et la caractérisation de cellules photoacoustiques résonantes différentielles d’Helmholtz (DHR) miniaturisées. Dans un premier temps, des simulations par la méthode des éléments finis de cellules à l'échelle millimétrique ont permis de montrer que la miniaturisation de ce type de résonateur est une voie prometteuse. Aussi, la réalisation ambitieuse d’une cellule DHR sur silicium a été engagée en utilisant les techniques de la microélectronique. Cependant, cette voie de miniaturisation extrême s'est heurtée à des difficultés de réalisation, qui n'ont pas permis d'obtenir des dispositifs fonctionnels. Une alternative de miniaturisation, à l'échelle centimétrique, utilisant des microphones MEMS du commerce, a donc été engagée. Trois cellules, fabriquées par différentes méthodes, ont été réalisées et testées pour la détection de méthane. La dernière génération a permis la détection d'environ 100 ppb de méthane avec un laser à cascade interbande commercial à 3,357 μm de longueur d’onde et de 2,4 mW de puissance optique ainsi qu’un temps d’intégration de 1 seconde. Pour préparer la prochaine génération de cellules, l'optimisation de la géométrie a été effectuée par simulation. Cette optimisation permet d'envisager une augmentation de 43 % du signal par rapport à la cellule la plus performante

    Multifidelity surrogate modeling based on Radial Basis Functions

    Get PDF
    International audienceMultiple models of a physical phenomenon are sometimes available with different levels of approximation. The high fidelity model is more computation-ally demanding than the coarse approximation. In this context, including information from the lower fidelity model to build a surrogate model is desirable. Here, the study focuses on the design of a miniaturized photoa-coustic gas sensor which involves two numerical models. First, a multifidelity metamodeling method based on Radial Basis Function, the co-RBF, is proposed. This surrogate model is compared with the classical co-kriging method on two analytical benchmarks and on the photoacoustic gas sensor. Then an extension to the multifidelity framework of an already existing RBF-based optimization algorithm is applied to optimize the sensor efficiency. The co-RBF method brings promising results on a problem in larger dimension and can be considered as an alternative to co-kriging for multifi-delity metamodeling

    KOSMOS. Kit d'Observation Sous-Marine Open Source. Un outil pour la science citoyenne

    No full text

    Challenges in the Design and Fabrication of a Lab-on-a-Chip Photoacoustic Gas Sensor

    Get PDF
    The favorable downscaling behavior of photoacoustic spectroscopy has provoked in recent years a growing interest in the miniaturization of photoacoustic sensors. The individual components of the sensor, namely widely tunable quantum cascade lasers, low loss mid infrared (mid-IR) waveguides, and efficient microelectromechanical systems (MEMS) microphones are becoming available in complementary metal–oxide–semiconductor (CMOS) compatible technologies. This paves the way for the joint processes of miniaturization and full integration. Recently, a prototype microsensor has been designed by the means of a specifically designed coupled optical-acoustic model. This paper discusses the new, or more intense, challenges faced if downscaling is continued. The first limitation in miniaturization is physical: the light source modulation, which matches the increasing cell acoustic resonance frequency, must be kept much slower than the collisional relaxation process. Secondly, from the acoustic modeling point of view, one faces the limit of validity of the continuum hypothesis. Namely, at some point, velocity slip and temperature jump boundary conditions must be used, instead of the continuous boundary conditions, which are valid at the macro-scale. Finally, on the technological side, solutions exist to realize a complete lab-on-a-chip, even if it remains a demanding integration problem
    corecore