167 research outputs found

    Effect of heat treatment on mechanical dissipation in Ta2_2O5_5 coatings

    Get PDF
    Thermal noise arising from mechanical dissipation in dielectric reflective coatings is expected to critically limit the sensitivity of precision measurement systems such as high-resolution optical spectroscopy, optical frequency standards and future generations of interferometric gravitational wave detectors. We present measurements of the effect of post-deposition heat treatment on the temperature dependence of the mechanical dissipation in ion-beam sputtered tantalum pentoxide between 11\,K and 300\,K. We find the temperature dependence of the dissipation is strongly dependent on the temperature at which the heat treatment was carried out, and we have identified three dissipation peaks occurring at different heat treatment temperatures. At temperatures below 200\,K, the magnitude of the loss was found to increase with higher heat treatment temperatures, indicating that heat treatment is a significant factor in determining the level of coating thermal noise.Comment: accepted Classical and Quantum Gravity 201

    Hubble Space Telescope Observations of Comet 9P/Tempel 1 during the Deep Impact Encounter

    Get PDF
    We report on the Hubble Space Telescope program to observe periodic comet 9P/Tempel 1 in conjunction with NASA's Deep Impact mission. Our objectives were to study the generation and evolution of the coma resulting from the impact and to obtain wide-band images of the visual outburst generated by the impact. Two observing campaigns utilizing a total of 17 HST orbits were carried out: the first occurred on 2005 June 13-14 and fortuitously recorded the appearance of a new, short-lived fan in the sunward direction on June 14. The principal campaign began two days before impact and was followed by contiguous orbits through impact plus several hours and then snapshots one, seven, and twelve days later. All of the observations were made using the Advanced Camera for Surveys (ACS). For imaging, the ACS High Resolution Channel (HRC) provides a spatial resolution of 36 km (16 km/pixel) at the comet at the time of impact. Baseline images of the comet, made prior to impact, photometrically resolved the comet's nucleus. The derived diameter, 6.1 km, is in excellent agreement with the 6.0 +/- 0.2 km diameter derived from the spacecraft imagers. Following the impact, the HRC images illustrate the temporal and spatial evolution of the ejecta cloud and allow for a determination of its expansion velocity distribution. One day after impact the ejecta cloud had passed out of the field-of-view of the HRC.Comment: 15 pages, 14 postscript figures. Accepted for publication in Icarus special issue on Deep Impac

    Investigating the medium range order in amorphous Ta<sub>2</sub>O<sub>5</sub> coatings

    Get PDF
    Ion-beam sputtered amorphous heavy metal oxides, such as Ta2O5, are widely used as the high refractive index layer of highly reflective dielectric coatings. Such coatings are used in the ground based Laser Interferometer Gravitational-wave Observatory (LIGO), in which mechanical loss, directly related to Brownian thermal noise, from the coatings forms an important limit to the sensitivity of the LIGO detector. It has previously been shown that heat-treatment and TiO2 doping of amorphous Ta2O5 coatings causes significant changes to the levels of mechanical loss measured and is thought to result from changes in the atomic structure. This work aims to find ways to reduce the levels of mechanical loss in the coatings by understanding the atomic structure properties that are responsible for it, and thus helping to increase the LIGO detector sensitivity. Using a combination of Reduced Density Functions (RDFs) from electron diffraction and Fluctuation Electron Microscopy (FEM), we probe the medium range order (in the 2-3 nm range) of these amorphous coatings

    Order within disorder: the atomic structure of ion-beam sputtered amorphous tantala (a-Ta2O5)

    Get PDF
    Amorphous tantala (a-Ta2O5) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta2O5 coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta 2O5 and other a-T2O5 studies

    Correlations between the mechanical loss and atomic structure of amorphous TiO2-doped Ta2O5 coatings

    Get PDF
    &lt;p&gt;Highly reflective dielectric mirror coatings are critical components in a range of precision optics applications including frequency combs, optical atomic clocks, precision interferometry and ring laser gyroscopes. A key limitation to the performance in these applications is thermal noise, arising from the mechanical loss of the coatings. The origins of the mechanical loss from these coatings is not well understood.&lt;/p&gt; &lt;p&gt;Recent work suggests that the mechanical loss of amorphous Ta2O5 coatings can drop by as much as 40% when it is doped with TiO2. We use a combination of electron diffraction data and atomic modelling using molecular dynamics to probe the atomic structure of these coatings, and examine the correlations between changes in the atomic structure and changes in the mechanical loss of these coatings. Our results show the first correlation between changes in the mechanical loss and experimentally measured changes in the atomic structure resulting from variations in the level of TiO2 doping in TiO2-doped Ta2O5 coatings, in that increased homogeneity at the nearest-neighbour level appears to correlate with reduced mechanical loss. It is demonstrated that subtle but measurable changes in the nearest-neighbour homogeneity in an amorphous material can correlate with significant changes in macroscopic properties.&lt;/p&gt

    Titania-doped tantala/silica coatings for gravitational-wave detection

    Get PDF
    Reducing thermal noise from optical coatings is crucial to reaching the required sensitivity in next generation interferometric gravitational-wave detectors. Here we show that adding TiO2 to Ta2O5 in Ta2O5/SiO2 coatings reduces the internal friction and in addition present data confirming it reduces thermal noise. We also show that TiO2-doped Ta2O5/SiO2 coatings are close to satisfying the optical absorption requirements of second generation gravitational-wave detectors

    Hybrid electron spin resonance and whispering gallery mode resonance spectroscopy of Fe3+ in sapphire

    Get PDF
    The development of a new era of quantum devices requires an understanding of how paramagnetic dopants or impurity spins behave in crystal hosts. Here, we describe a spectroscopic technique which uses traditional electron spin resonance (ESR) combined with the measurement of a large population of electromagnetic whispering gallery modes. This allows the characterization of the physical parameters of paramagnetic impurity ions in the crystal at low temperatures. We present measurements of two ultrahigh-purity sapphires cooled to 20 mK in temperature, and determine the concentration of Fe3 ions and their frequency sensitivity to a dc magnetic field. Our method is different from ESR in that it is possible to track the resonant frequency of the ion from zero applied magnetic field to any arbitrary value, allowing excellent measurement precision. This high precision reveals anisotropic behavior of the Zeeman splitting. In both crystals, each Zeeman component demonstrates a different g factor

    Measurements of a low temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2

    Get PDF
    Thermal noise arising from mechanical dissipation in oxide coatings is a major limitation to many precision measurement systems, including optical frequency standards, high resolution optical spectroscopy and interferometric gravity wave detectors. Presented here are measurements of dissipation as a function of temperature between 7 K and 290 K in ion-beam sputtered Ta2O5 doped with TiO2, showing a loss peak at 20 K. Analysis of the peak provides the first evidence of the source of dissipation in doped Ta2O5 coatings, leading to possibilities for the reduction of thermal noise effects
    • 

    corecore