109 research outputs found

    Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes

    Get PDF
    We study the excitonic recombination dynamics in an ensemble of (9,4) semiconducting single-wall carbon nanotubes by high sensitivity time-resolved photo-luminescence experiments. Measurements from cryogenic to room temperature allow us to identify two main contributions to the recombination dynamics. The initial fast decay is temperature independent and is attributed to the presence of small residual bundles that create external non-radiative relaxation channels. The slow component shows a strong temperature dependence and is dominated by non-radiative processes down to 40 K. We propose a quantitative phenomenological modeling of the variations of the integrated photoluminescence intensity over the whole temperature range. We show that the luminescence properties of carbon nanotubes at room temperature are not affected by the dark/bright excitonic state coupling

    Excitation transfer and luminescence in porphyrin-carbon nanotube complexes

    Get PDF
    Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by "π\pi-stacking". The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize π−π\pi-\pi interactions. The porphyrin-nanotube complex shows a strong quenching of the TPPS emission while the photoluminescence intensity of the nanotubes is enhanced when the excitation laser is in resonance with the porphyrin absorption band. This reveals an efficient excitation transfer from the TPPS to the carbon nanotube

    Time-resolved spectroscopy of multi-excitonic decay in an InAs quantum dot

    Full text link
    The multi-excitonic decay process in a single InAs quantum dot is studied through high-resolution time-resolved spectroscopy. A cascaded emission sequence involving three spectral lines is seen that is described well over a wide range of pump powers by a simple model. The measured biexcitonic decay rate is about 1.5 times the single-exciton decay rate. This ratio suggests the presence of selection rules, as well as a significant effect of the Coulomb interaction on the biexcitonic wavefunction.Comment: one typo fixe

    Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot

    Get PDF
    Motional narrowing refers to the striking phenomenon where the resonance line of a system coupled to a reservoir becomes narrower when increasing the reservoir fluctuation. A textbook example is found in nuclear magnetic resonance, where the fluctuating local magnetic fields created by randomly oriented nuclear spins are averaged when the motion of the nuclei is thermally activated. The existence of a motional narrowing effect in the optical response of semiconductor quantum dots remains so far unexplored. This effect may be important in this instance since the decoherence dynamics is a central issue for the implementation of quantum information processing based on quantum dots. Here we report on the experimental evidence of motional narrowing in the optical spectrum of a semiconductor quantum dot broadened by the spectral diffusion phenomenon. Surprisingly, motional narrowing is achieved when decreasing incident power or temperature, in contrast with the standard phenomenology observed for nuclear magnetic resonance

    Bistable Helmholtz bright solitons in saturable materials

    Get PDF
    We present, to the best of our knowledge, the first exact analytical solitons of a nonlinear Helmholtz equation with a saturable refractive-index model. These new two-dimensional spatial solitons have a bistable characteristic in some parameter regimes, and they capture oblique (arbitrary-angle) beam propagation in both the forward and backward directions. New conservation laws are reported, and the classic paraxial solution is recovered in an appropriate multiple limit. Analysis and simulations examine the stability of both solution branches, and stationary Helmholtz solitons are found to emerge from a range of perturbed input beams

    Center-of-Mass Properties of the Exciton in Quantum Wells

    Full text link
    We present high-quality numerical calculations of the exciton center-of-mass dispersion for GaAs/AlGaAs quantum wells of widths in the range 2-20 nm. The k.p-coupling of the heavy- and light-hole bands is fully taken into account. An optimized center-of-mass transformation enhances numerical convergence. We derive an easy-to-use semi-analytical expression for the exciton groundstate mass from an ansatz for the exciton wavefunction at finite momentum. It is checked against the numerical results and found to give very good results. We also show multiband calculations of the exciton groundstate dispersion using a finite-differences scheme in real space, which can be applied to rather general heterostructures.Comment: 19 pages, 12 figures included, to be published in Phys. Rev.

    Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.

    Get PDF
    International audienceSHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders
    • 

    corecore