107 research outputs found

    Semi-automated application for kidney motion correction and filtration analysis in MR renography

    Get PDF
    pre-printAltered renal function commonly affects patients with cirrhosis, a consequence of chronic liver disease. From lowdose contrast material-enhanced magnetic resonance (MR) renography, we can estimate the Glomerular Filtration Rate (GFR), an important parameter to assess renal function. Two-dimensional MR images are acquired every 2 seconds for approximately 5 minutes during free breathing, which results in a dynamic series of 140 images representing kidney filtration over time. This specific acquisition presents dynamic contrast changes but is also challenged by organ motion due to breathing. Rather than use conventional image registration techniques, we opted for an alternative method based on object detection. We developed a novel analysis framework available under a stand-alone toolkit to efficiently register dynamic kidney series, manually select regions of interest, visualize the concentration curves for these ROIs, and fit them into a model to obtain GFR values. This open-source cross-platform application is written in C++, using the Insight Segmentation and Registration Toolkit (ITK) library, and QT4 as a graphical user interface

    Adaptive Basis Scan by Wavelet Prediction for Single-Pixel Imaging

    Get PDF
    International audienceSingle pixel camera imaging is an emerging paradigm that allows high-quality images to be provided by a device only equipped with a single point detector. A single pixel camera is an experimental setup able to measure the inner product of the scene under view –the image– with any user-defined pattern. Post-processing a sequence of point measurements obtained with different patterns permits to recover spatial information, as it has been demonstrated by state-of-the art approaches belonging to the compressed sensing framework. In this paper, a new framework for the choice of the patterns is proposed together with a simple and efficient image recovery scheme. Our goal is to overcome the computationally demanding 1-minimization of compressed sensing. We propose to choose patterns among a wavelet basis in an adaptive fashion, which essentially relies onto the prediction of the significant wavelet coefficients' location. More precisely, we adopt a multiresolution strategy that exploits the set of measurements acquired at coarse scales to predict the set of measurements to be performed at a finer scale. Prediction is based on a fast cubic interpolation in the image domain. A general formalism is given so that any kind of wavelets can be used, which enables one to adjust the wavelet to the type of images related to the desired application. Both simulated and experimental results demonstrate the ability of our technique to reconstruct biomedical images with improved quality compared to CS-based recovery. Application to real-time fluorescence imaging of biological tissues could benefit from the proposed method

    Identification and Characterization of Microcin S, a New Antibacterial Peptide Produced by Probiotic Escherichia coli G3/10

    Get PDF
    Escherichia coli G3/10 is a component of the probiotic drug Symbioflor 2. In an in vitro assay with human intestinal epithelial cells, E. coli G3/10 is capable of suppressing adherence of enteropathogenic E. coli E2348/69. In this study, we demonstrate that a completely novel class II microcin, produced by probiotic E. coli G3/10, is responsible for this behavior. We named this antibacterial peptide microcin S (MccS). Microcin S is coded on a 50.6 kb megaplasmid of E. coli G3/10, which we have completely sequenced and annotated. The microcin S operon is about 4.7 kb in size and is comprised of four genes. Subcloning of the genes and gene fragments followed by gene expression experiments enabled us to functionally characterize all members of this operon, and to clearly identify the nucleotide sequences encoding the microcin itself (mcsS), its transport apparatus and the gene mcsI conferring self immunity against microcin S. Overexpression of cloned mcsI antagonizes MccS activity, thus protecting indicator strain E. coli E2348/69 in the in vitro adherence assay. Moreover, growth of E. coli transformed with a plasmid containing mcsS under control of an araC PBAD activator-promoter is inhibited upon mcsS induction. Our data provide further mechanistic insight into the probiotic behavior of E. coli G3/10

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    • …
    corecore