98 research outputs found

    NS3 protease from flavivirus as a target for designing antiviral inhibitors against dengue virus

    Get PDF
    The development of novel therapeutic agents is essential for combating the increasing number of cases of dengue fever in endemic countries and among a large number of travelers from non-endemic countries. The dengue virus has three structural proteins and seven non-structural (NS) proteins. NS3 is a multifunctional protein with an N-terminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. The serine protease domain of NS3 plays a central role in the replicative cycle of dengue virus. This review discusses the recent structural and biological studies on the NS2B-NS3 protease-helicase and considers the prospects for the development of small molecules as antiviral drugs to target this fascinating, multifunctional protein

    Dicer Is Associated with Ribosomal DNA Chromatin in Mammalian Cells

    Get PDF
    Background: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. Methodology/Principal Findings: Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA) repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES) cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer 2/2 ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. Conclusion/Significance: We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since th

    Genetic Loci Involved in Antibody Response to Mycobacterium avium ssp. paratuberculosis in Cattle

    Get PDF
    Background: Mycobacterium avium subsp. paratuberculosis (MAP) causes chronic enteritis in a wide range of animal species. In cattle, MAP causes a chronic disease called Johne's disease, or paratuberculosis, that is not treatable and the efficacy of vaccine control is controversial. The clinical phase of the disease is characterised by diarrhoea, weight loss, drop in milk production and eventually death. Susceptibility to MAP infection is heritable with heritability estimates ranging from 0.06 to 0.10. There have been several studies over the last few years that have identified genetic loci putatively associated with MAP susceptibility, however, with the availability of genome-wide high density SNP maker panels it is now possible to carry out association studies that have higher precision. Methodology/Principal Findings: The objective of the current study was to localize genes having an impact on Johne's disease susceptibility using the latest bovine genome information and a high density SNP panel (Illumina BovineSNP50 BeadChip) to perform a case/control, genome-wide association analysis. Samples from MAP case and negative controls were selected from field samples collected in 2007 and 2008 in the province of Lombardy, Italy. Cases were defined as animals serologically positive for MAP by ELISA. In total 966 samples were genotyped: 483 MAP ELISA positive and 483 ELISA negative. Samples were selected randomly among those collected from 119 farms which had at least one positive animal. Conclusion/Significance: The analysis of the genotype data identified several chromosomal regions associated with disease status: a region on chromosome 12 with high significance (P<5 710-6), while regions on chromosome 9, 11, and 12 had moderate significance (P<5 710-5). These results provide evidence for genetic loci involved in the humoral response to MAP. Knowledge of genetic variations related to susceptibility will facilitate the incorporation of this information into breeding programmes for the improvement of health status

    Glucose sensing in the pancreatic beta cell: a computational systems analysis

    Get PDF

    The self-organizing fractal theory as a universal discovery method: the phenomenon of life

    Get PDF
    A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy

    From sequence to enzyme mechanism using multi-label machine learning

    Get PDF
    Background: In this work we predict enzyme function at the level of chemical mechanism, providing a finer granularity of annotation than traditional Enzyme Commission (EC) classes. Hence we can predict not only whether a putative enzyme in a newly sequenced organism has the potential to perform a certain reaction, but how the reaction is performed, using which cofactors and with susceptibility to which drugs or inhibitors, details with important consequences for drug and enzyme design. Work that predicts enzyme catalytic activity based on 3D protein structure features limits the prediction of mechanism to proteins already having either a solved structure or a close relative suitable for homology modelling. Results: In this study, we evaluate whether sequence identity, InterPro or Catalytic Site Atlas sequence signatures provide enough information for bulk prediction of enzyme mechanism. By splitting MACiE (Mechanism, Annotation and Classification in Enzymes database) mechanism labels to a finer granularity, which includes the role of the protein chain in the overall enzyme complex, the method can predict at 96% accuracy (and 96% micro-averaged precision, 99.9% macro-averaged recall) the MACiE mechanism definitions of 248 proteins available in the MACiE, EzCatDb (Database of Enzyme Catalytic Mechanisms) and SFLD (Structure Function Linkage Database) databases using an off-theshelf K-Nearest Neighbours multi-label algorithm. Conclusion: We find that InterPro signatures are critical for accurate prediction of enzyme mechanism. We also find that incorporating Catalytic Site Atlas attributes does not seem to provide additional accuracy. The software code (ml2db), data and results are available online at http://sourceforge.net/projects/ml2db/ and as supplementary files.Publisher PDFPeer reviewe

    Fiber orientation during casting of UHPFRC: electrical resistivity measurements, image analysis and numerical simulations

    No full text
    Fibers are added to cementitious materials to enhance their mechanical behavior in hardened state. This reinforcement is strongly influenced by the fiber preferred orientation induced by casting flow. In this paper, a model derived from the evolution of a single rigid fiber orientation in a Newtonian medium is proposed to numerically predict fiber orientation in a cementitious structure in hardened state. The main characteristics of fiber orientation during a pouring representative of industrial castings are detailed. Experimental measurements taken on the same reference casting confirm this hardened state orientation
    • …
    corecore