46 research outputs found

    Transmon in a semi-infinite high-impedance transmission line -- appearance of cavity modes and Rabi oscillations

    Get PDF
    In this letter, we investigate the dynamics of a single superconducting artificial atom capacitively coupled to a transmission line with a characteristic impedance comparable or larger than the quantum resistance. In this regime, microwaves are reflected from the atom also at frequencies far from the atom's transition frequency. Adding a single mirror in the transmission line then creates cavity modes between the atom and the mirror. Investigating the spontaneous emission from the atom, we then find Rabi oscillations, where the energy oscillates between the atom and one of the cavity modes

    Semiclassical analysis of dark-state transient dynamics in waveguide circuit QED

    Get PDF
    The interaction between superconducting qubits and one-dimensional microwave transmission lines has been studied experimentally and theoretically in the past two decades. In this work, we investigate the spontaneous emission of an initially excited artificial atom which is capacitively coupled to a semi-infinite transmission line, shorted at one end. This configuration can be viewed as an atom in front of a mirror. The distance between the atom and the mirror introduces a time delay in the system, which we take into account fully. When the delay time equals an integer number of atom oscillation periods, the atom converges into a dark state after an initial decay period. The dark state is an effect of destructive interference between the reflected part of the field and the part directly emitted by the atom. Based on circuit quantization, we derive linearized equations of motion for the system and use these for a semiclassical analysis of the transient dynamics. We also make a rigorous connection to the quantum optics system-reservoir approach and compare these two methods to describe the dynamics. We find that both approaches are equivalent for transmission lines with a low characteristic impedance, while they differ when this impedance is higher than the typical impedance of the superconducting artificial atom

    Phonon-mediated dark to bright plasmon conversion

    Full text link
    The optical response of a matter excitation embedded in nanophotonic devices is commonly described by the Drude-Lorentz model. Here, we demonstrate that this widely used approach fails in the case where quantum-confined plasmons of a two-dimensional electron gas interact strongly with optical phonons. We propose a new quantum model which contains the semiclassical Drude-Lorentz one for simple electronic potentials, but predicts very different results in symmetry-broken potentials. We unveil a new mechanism for the oscillator strength transfer between bright phonon-polariton and dark plasmon modes, enabling thus new quantum degrees of freedom for designing the optical response of nanostructures

    Comparative study of plasmonic antennas for strong coupling and quantum nonlinearities with single emitters

    Get PDF
    Realizing strong coupling between a single quantum emitter (QE) and an optical cavity is of crucial importance in the context of various quantum optical applications. While Rabi splitting of single quantum emitters coupled to high-Q diffraction limited cavities have been reported in numerous configurations, attaining single emitter Rabi splitting with a plasmonic nanostructure is still elusive. Here, we establish the analytical condition for strong coupling between a single QE and a plasmonic nanocavity and apply it to study various plasmonic arrangements that were shown to enable Rabi splitting. We investigate numerically the optical response and the resulting Rabi splitting in metallic nanostructures such as bow-tie nanoantennas, nanosphere dimers and nanospheres on a surface and find the optimal geometries for emergence of the strong coupling regime with single QEs. We also provide a master equation approach to show the saturation of a single QE in the gap of a silver bow-tie nanoantenna. Our results will be useful for implementation of realistic quantum plasmonic nanosystems involving single QEs.Comment: 9 pages, 7 figure

    Unconventional saturation effects at intermediate drive in a lossy cavity coupled to few emitters

    Full text link
    Recent technological advancements have enabled strong light-matter interaction in highly dissipative cavity-emitter systems. However, in these systems, which are well described by the Tavis-Cummings model, the considerable loss rates render the realization of many desirable nonlinear effects, such as saturation and photon blockade, problematic. Here we present another effect occurring within the Tavis-Cummings model: a nonlinear response of the cavity for resonant external driving of intermediate strength, which makes use of large cavity dissipation rates. In this regime, (N+1)(N+1)-photon processes dominate when the cavity couples to NN emitters. We explore and characterize this effect in detail, and provide a picture of how the effect occurs due to destructive interference between the emitter ensemble and the external drive. We find that a central condition for the observed effect is large cooperativity, i.e., the product of the cavity and emitter decay rates is much smaller than the collective cavity-emitter interaction strength squared. Importantly, this condition does not require strong coupling. We also find an analytical expression for the critical drive strength at which the effect appears. Our results have potential for quantum state engineering, e.g., photon filtering, and could be used for the characterization of cavity-emitter systems where the number of emitters is unknown. In particular, our results open the way for investigations of unique quantum-optics applications in a variety of platforms that neither require high-quality cavities nor strong coupling.Comment: 27 pages, 13 figures. New material including analytical calculations and discussions about approximation

    Strong coupling out of the blue: an interplay of quantum emitter hybridization with plasmonic dark and bright modes

    Get PDF
    Strong coupling between a single quantum emitter and an electromagnetic mode is one of the key effects in quantum optics. In the cavity QED approach to plasmonics, strongly coupled systems are usually understood as single-transition emitters resonantly coupled to a single radiative plasmonic mode. However, plasmonic cavities also support non-radiative (or "dark") modes, which offer much higher coupling strengths. On the other hand, realistic quantum emitters often support multiple electronic transitions of various symmetry, which could overlap with higher order plasmonic transitions -- in the blue or ultraviolet part of the spectrum. Here, we show that vacuum Rabi splitting with a single emitter can be achieved by leveraging dark modes of a plasmonic nanocavity. Specifically, we show that a significantly detuned electronic transition can be hybridized with a dark plasmon pseudomode, resulting in the vacuum Rabi splitting of the bright dipolar plasmon mode. We develop a simple model illustrating the modification of the system response in the "dark" strong coupling regime and demonstrate single photon non-linearity. These results may find important implications in the emerging field of room temperature quantum plasmonics

    Upper bounds on collective light-matter coupling strength with plasmonic meta-atoms

    Full text link
    Ultrastrong coupling between optical and material excitations is a distinct regime of electromagnetic interaction that enables a variety of intriguing physical phenomena. Traditional ways to ultrastrong light-matter coupling involve the use of some sorts of quantum emitters, such as organic dyes, quantum wells, superconducting artificial atoms, or transitions of two-dimensional electron gases. Often, reaching the ultrastrong coupling domain requires special conditions, including high vacuum, strong magnetic fields, and extremely low temperatures. Recent report indicate that a high degree of light-matter coupling can be attained at ambient conditions with plasmonic meta-atoms -- artificial metallic nanostructures that replace quantum emitters. Yet, the fundamental limits on the coupling strength imposed on such systems have not been identified. Here, using a Hamiltonian approach we theoretically analyze the formation of polaritonic states and examine the upper limits of the collective plasmon-photon coupling strength in a number of dense assemblies of plasmonic meta-atoms. Starting off with spheres, we identify the universal upper bounds on the normalized collective coupling strength g/ω0g/\omega_0 between ensembles of plasmonic meta-atoms and free-space photons. Next, we examine spheroidal metallic meta-atoms and show that a strongly elongated meta-atom is the optimal geometry for attaining the highest value of the collective coupling strength in the array of meta-atoms. The results could be valuable for the field of polaritonics studies, quantum technology, and modifying material properties

    Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions

    Get PDF
    Ultrastrong coupling is a distinct regime of electromagnetic interaction that enables a rich variety of intriguing physical phenomena. Traditionally, this regime has been reached by coupling intersubband transitions of multiple quantum wells, superconducting artificial atoms, or two-dimensional electron gases to microcavity resonators. However, employing these platforms requires demanding experimental conditions such as cryogenic temperatures, strong magnetic fields, and high vacuum. Here, we use plasmonic nanorods array positioned at the antinode of the resonant optical Fabry-P\'erot microcavity to reach the ultrastrong coupling (USC) regime at ambient conditions and without the use of magnetic fields. From optical measurements we extract the value of the interaction strength over the transition energy as high as g/{\omega}~0.55, deep in the USC regime, while the nanorods array occupies only ~4% of the cavity volume. Moreover, by comparing the resonant energies of the coupled and uncoupled systems, we indirectly observe up to ~10% modification of the ground-state energy, which is a hallmark of USC. Our results suggest that plasmon-microcavity polaritons are a promising new platform for room-temperature USC realizations in the optical and infrared range.Comment: 4 figure

    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Applications 28 (2018): 749-760, doi: 10.1002/eap.1682.The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.National Center for Ecological Analysis and Synthesis (NCEAS); National Aeronautics and Space Administration (NASA) Grant Numbers: NNX16AQ34G, NNX14AR62A; National Ocean Partnership Program; NOAA US Integrated Ocean Observing System/IOOS Program Office; Bureau of Ocean and Energy Management Ecosystem Studies program (BOEM) Grant Number: MC15AC0000
    corecore