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Realizing strong coupling between a single quantum emitter (QE) and an optical cavity is of crucial importance
in the context of various quantum optical applications. Although Rabi splitting of single quantum emitters coupled
to high-Q classical cavities has been reported in numerous configurations, attaining single emitter Rabi splitting
with a plasmonic nanostructure remains a challenge. In particular, strong coupling at the single QE regime would
open the path for the realization of single-photon nonlinearities. In this paper, we derive a plasmon quantization
procedure for systems consisting of a single QE located in the gap of a nanoantenna. This procedure leads to the
description of the quantum dynamics by a master equation for the state of the QE and the quantized plasmonic
modes, which is crucial to demonstrate the emergence of single-photon nonlinearities. We investigate numerically
the optical response and the resulting Rabi splitting in metallic nanoantennas and find the optimal geometries for
the emergence of the strong-coupling regime with single QEs. Finally, we demonstrate the saturation of hybridized
modes for a chosen configuration. Our results will be useful for implementation of realistic quantum plasmonic
nanosystems involving single QEs at room temperature.

DOI: 10.1103/PhysRevB.98.045435

I. INTRODUCTION

Interaction between the electromagnetic modes of a cavity
and a two-level quantum emitter (QE) in the most simple
picture described by the Jaynes-Cummings (JC) Hamiltonian
is responsible for a rich variety of peculiar quantum optical
effects [1–3]. The Rabi frequency �, which in this framework
determines the strength of interaction between light and matter,
is the crucial parameter determining the behavior of a strongly
coupled system. The weak light-matter interaction, realized
when the Rabi frequency is small compared to rates of dissipa-
tive processes, manifests itself in the Markovian dynamics of
the system characterized by the irreversible spontaneous decay
of the QE [4,5]. It can be further accelerated by increasing
the local density of optical states (LDOS), e.g., using a cavity
[6–10].

Strong coupling, on the other hand, is a special regime of
light-matter interaction, emerging when the Rabi frequency ex-
ceeds the rates of incoherent processes [11–14]. In this regime
of light-matter interaction the photonic and matter components
of the system can no longer be treated as separate entities as
they form the polaritonic states (sometimes referred to as the
dressed states) with their eigenenergies being separated by
the Rabi splitting of � [12,15–17]. Such an evolution of the
system spectrum modifies its response and dramatically affects
transport [18,19] and chemical [20–23] properties. Strong
light-matter coupling is particularly interesting in the single
emitter limit when unique features of the Jaynes-Cummings
ladder enable ultrafast and single-photon optical nonlinearities
[24,25].

*benjamin.rousseaux@chalmers.se

Although strong coupling between high-Q dielectric cav-
ities and single emitters, such as atoms, quantum dots, and
superconducting qubits has been the subject of intense research
[26–29], much less progress has been made in the realization
of strong coupling between single emitters and plasmonic
nanostructures. The ability to strongly couple a single QE
to a nanoscale plasmonic antenna would be extra beneficial
for quantum information processing applications [30–33].
Although observations of Rabi splitting with ensembles of
quantum emitters coupled to plasmonic structures have been
widely reported [13,34–39], only a few recent reports claimed
observation of Rabi splitting with a single QE [40–44]. Achiev-
ing prominent and robust splittings in plasmonic structures
is hindered mostly by low-Q factors of such nanocavities—a
problem that has been suggested to deal with via structuring
the environment of the emitter [45,46].

Reaching the regime of strong coupling with a single QE
is challenging. Indeed, several previous theoretical studies
have described a related but less demanding regime of in-
teraction, i.e., the emergence of Fano resonance in single
QE-plasmon systems [47–49]. Such phenomena can also lead
to single-photon nonlinearities on the nanoscale with the
saturation of the QE when the system is driven strongly
enough. However, Fano interference requires both high quan-
tum yield of the nanoantenna and low internal loss of the
QE, thus low-temperature setups. Strongly coupled single
QE-plasmon systems would enable the observation of single-
photon nonlinearities at room temperature as the QE drastically
affects the optical response of the plasmonic structure. Studies
reporting strong coupling between a single QE and the plas-
monic cavities have revealed characteristic values for both the
Purcell factors and the QE dipole moments involved in this
regime [40,50–56].
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In this paper, we systematically address the problem of
strong coupling with a single QE within a quantum description
of plasmonic resonances. In Sec. II, we derive a quantiza-
tion procedure based on Refs. [57–59] and extend it to an
arbitrary shaped nanoantenna by linking the Jaynes-Cummings
coupling g with numerical solutions of the local density of
states. The effective non-Hermitian Hamiltonian is then shown
to be equivalent to a quantum master equation description of the
QE-plasmon system where the plasmonic mode is described
as a mixture of bright and dark modes. In Sec. III we establish
the analytical condition for strong coupling between a single
QE and a plasmonic nanocavity and analyze various plasmonic
nanostructures enabling Rabi splitting. We study numerically
the optical response and the resulting Rabi splitting in metallic
nanostructures, such as bow-tie nanoantennas, nanosphere
dimers, and nanospheres on a surface and find the optimal
geometries for the emergence of the strong-coupling regime
with single QEs corresponding to several existing materials.
We also discuss the impact of multiple modes of a plasmonic
resonator on the strong-coupling regime and the trade-off
between radiative and nonradiative processes. Finally, we
demonstrate the emergence of a single-photon nonlinearity by
numerically solving the master equation for an optimal con-
figuration, and calculate the second-order correlation function
g(2)(τ ) for this configuration. In the last section, we summarize
our results and prospects in a conclusion.

II. QUANTUM DESCRIPTION AND STRONG-COUPLING
REGIME

A. LDOS and Purcell factor

In this section, we develop the theoretical framework for the
description of a single QE coupled to a nanoscale structure.
This framework is based on the description of spontaneous
emission in a structured environment, which is originally
pictured by the Purcell effect, as the QE decays faster into
an environment with a higher number of surrounding modes.
We derive the quantization procedure leading to a set of spe-
cific cavity modes associated with localized surface-plasmon
resonances, enabling the construction of the master equation
for the dynamics and derive the threshold condition for the
LDOS and the QE dipole moment upon which strong coupling
occurs between the QE and the cavity modes (see Fig. 1).

We start with the formulation of the LDOS, which is a space-
dependent quantity describing how fast quantum emitters can
decay in localized field modes. It is determined with the
Green’s tensor of the electric-field contribution, corresponding
to the solution of the Maxwell-Helmholtz equation,(

∇ × ∇ × −ω2

c2
ε(r, ω)

)
¯̄Gω(r, r′) = ¯̄Iδ(r − r′), (1)

where ε(r, ω) is the dielectric function and ¯̄I is the 3 × 3
identity matrix. For an emitter whose transition dipole moment
is along the unit vector n, the LDOS is as follows:

ρn(rE, ω) = 6ω

πc2
n · Im{ ¯̄Gω(rE, rE )}n, (2)

where rE is the position of the emitter and ω is the angular
frequency. We also consider the quantity defined through the

weak coupling

strong coupling
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O

S
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FIG. 1. Schematic of the structure under study: a two-level
system modeling a quantum emitter positioned in the hot spot of a
nanoantenna. Upon an increase in the LDOS or the QE transition
dipole moment, the system exhibits transition from the weak- to
strong-coupling regime when Rabi oscillations take over spontaneous
emission.

relation,

FP (ω) = �

γ0
= ρn(rE, ω)

ρ0
n (rE, ω)

, (3)

which is the Purcell factor at frequency ω, and ρ0
n (rE, ω) is

the LDOS in free space. It can also be written in terms of
the modified spontaneous emission rate � of the QE, divided
by its free space spontaneous emission rate γ0. We note that
the Purcell factor is a property of the nanoantenna alone,
hence it is independent of the QE dipole moment. It is seen
from (2) that the knowledge of the Green’s tensor ¯̄Gω(rE, rE )
provides the LDOS and the Purcell factor. The Green’s dyadic
can be obtained in two manners: Using analytical derivations,
and using numerics. In the case of spherical and spheroidal
geometries (e.g., for spherical or prolate spheroidal nanoparti-
cles), the Green’s tensor can be obtained analytically [60,61].
Nevertheless, for more complicated geometries, one has to
rely on numerical calculations [62]. The tools for getting
the Green’s function of arbitrary geometries are provided by
finite-difference time-domain (FDTD) software.

B. Quantum description of a single emitter coupled
to plasmonic modes

1. General Green’s tensor approach

To understand the different coupling regimes, we use
a quantum description and derive an effective Hamiltonian
[57–59] whose structure is completely analogous to cavity
QED Hamiltonians. The derivation is based on a first-principles
method corresponding to the coupling of a single two-level
system with a reservoir of harmonic oscillators: the Fano
diagonalization [63,64]. In this description, the electric field
is toggled by creation and annihilation operators f̂†ω(r), f̂ω(r)
obeying the commutation relations,

[ f̂ω(r), f̂†ω′ (r′)] = δ(r − r′)δ(ω − ω′). (4)
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In other words, the environment of the quantum emitter corre-
sponding to the nanoparticles and the surrounding free space
is diagonalized and described by these global operators. In
addition, the geometry of the structure considered is reflected
in the use of the Green’s tensor ¯̄Gω(r, r′) in the expression of
the electric field,

Ê(r) =
∫ +∞

0
dω[Ê(+)

ω (r) + Ê(−)
ω (r)], (5a)

Ê(+)
ω (r) = i

√
h̄

πε0

ω2

c2

∫
d3r ′√ε′′

ω(r′) ¯̄Gω(r, r′) · f̂ω(r′),

(5b)

Ê(−)
ω (r) = [Ê(+)

ω (r)]†, (5c)

where we introduced the imaginary part of the dielectric
function ε′′

ω(r) = Im{ε(r, ω)}, which contains the information
about the optical properties of the geometry. The calculation of
the Green’s tensor along with the boundary conditions projects
the general structure of the field into a subspace corresponding
to the specific choice of the geometry. In this consideration the
basis of the creation-annihilation operators f̂†ω(r), f̂ω(r) is also
projected onto a subspace of electromagnetic modes, and the
field Hamiltonian reduces to the basis,

Ĥfield =
∫ +∞

0
dω h̄ω

∫
d3r f̂†ω(r )̂fω(r)

−→
∑

η

∫ +∞

0
dω h̄ω â†

η(ω )̂aη(ω), (6)

where here the creation-annihilation operators â
†
η(ω), âη(ω)

toggle excitations of localized surface-plasmon cavity modes
labeled by the general index η at frequency ω. For the new
operators to obey the commutation relation [̂aη(ω), â†

η′ (ω′)] =
δηη′δ(ω − ω′), it is required that all cavity modes η are
orthogonal to each other. As an example, in the case of an
emitter close to a nanosphere, this general index reduces to
a harmonic index n = 1, 2, . . ., whose values are associated
with specific mode geometries: n = 1 is the dipolar mode,
n = 2 is the quadrupolar mode, etc. [57,58]. The coupling
of the plasmonic field and the emitter is introduced with a
dipole coupling term −μ̂ · Ê(rE ) where the QE is a pointlike
two-level quantum system with a finite dipole moment μ,
and the total rotating-wave approximation (RWA) Hamiltonian
reads

Ĥ = h̄ω0σ̂+σ̂− +
∑

η

∫ +∞

0
dω h̄ωâ†

η(ω )̂aη(ω)

+ ih̄
∑

η

∫ +∞

0
dω[κη(ω )̂a†

η(ω )̂σ− − H.c.]. (7)

In the above expression, ω0 denotes the transition frequency of
the two-level emitter, σ̂− = |g〉〈e|, σ̂+ = σ̂

†
− are the lowering

and raising operators of the transition, and κη(ω) is the emitter-
mode coupling, associated with a specific mode η. The latter
contains the Green’s tensor through the expression,

|κη(ω)|2 = 1

h̄πε0

ω2

c2
μ · Im{ ¯̄Gη,ω(rE, rE )}μ, (8)

with ¯̄Gη,ω(rE, rE ) being the Green’s tensor corresponding to
mode η. We see that the square modulus of the emitter-field
coupling is proportional to the LDOS (2) for a given mode. The
knowledge of the latter is then essential for the understanding
of the quantum description.

2. Single-mode effective model

In cavity QED, the description of the cavity field is often, to
a good approximation, taken to be a single mode. In quantum
plasmonics, however, this is often not the case, and one has to
include many plasmonic modes in the model as is the case
for spherical nanoparticles. The single-mode approach can
nevertheless be a useful tool for understanding the different
coupling regimes.

Let us consider a single-mode η interacting with a QE. The
corresponding emitter-mode coupling κ (ω) has a Lorentzian
shape [57,58],

κ (ω) =
√

γcav

2π

g

ω − ωc + i
γcav

2

, (9)

where ωc is the cavity-mode frequency, γcav is the cavity decay
rate being equal to the full width of its scattering spectrum, and
g is the usual Jaynes-Cummings interaction constant,

g =
√

πωcγcavρn(rE, ωc )

12h̄ε0
μ. (10)

Solving the time-dependent Schrödinger equation with Hamil-
tonian (7) and using the Lorentzian profile (9), it can be shown
that the full Hamiltonian reduces to the effective Hamiltonian,

Ĥeff =
(

ω0 g

g ωc − i
γcav

2

)
, (11)

which is expressed in the single excitation basis {|e, 0〉, |g, 1〉}
where only one photon is exchanged via the |e〉 ↔ |g〉 tran-
sition. This effective Hamiltonian is non-Hermitian due to
the loss terms on the diagonal as this arises when coupling
a discrete state coupled to a continuum of modes. It is also
equivalent to take only the Hermitian part of this Hamiltonian
and write a Lindblad master equation for the time evolution of
the state [65,66],

˙̂� = −i[ĤJC, �̂(t )]+γcav

(
â�̂(t )̂a†−1

2
â†â�̂(t ) − 1

2
�̂(t )̂a†â

)
,

(12)

where �̂(t ) is the density operator for the state of the QE-
plasmon system, â is the annihilation operator of the plas-
mon mode, and ĤJC = ω0σ̂+σ̂− + ωcâ

†â + g (̂a†σ̂− + âσ̂+) is
the Jaynes-Cummings Hamiltonian. We must underline that
Eq. (12) has no damping term corresponding to the two-level
QE and that all the dissipation is channeled through the
Lindblad operator L̂ = √

γcav â corresponding to the electro-
magnetic environment of the QE. In particular, it is shown that
in the Purcell regime (γcav 	 g), the master equation reduces
to [67]

˙̂�0 = −i[Ĥ0, �̂0(t )] + 4g2

γcav

(
σ̂−�̂0(t )̂σ+ − 1

2
σ̂+σ̂−�̂0(t )

− 1

2
�̂0(t )̂σ+σ̂−

)
, (13)
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where �̂0 = Trcav{̂�} is the reduced density operator associated
with the QE and Ĥ0 = ω0σ̂+σ̂− is the free QE Hamiltonian.
Moreover it can be easily seen that replacing the LDOS in (10)
by the free space LDOS ρ0

n (rE, ω0) = ω2
0/π

2c3 and taking
ωc = ω0, the decay rate 4g2/γcav reduces to the free space
decay rate,

γ0 = μ2ω3
0

3h̄πε0c3
. (14)

III. STRONG-COUPLING CONDITION, COMPARATIVE
STUDY, AND SINGLE-PHOTON NONLINEARITY

A. Analytical condition

The dynamics of a single QE coupled to a plasmonic mode
is parametrized by three quantities: the JC interaction constant
g, the QE free space decay rate γ0, and the cavity mode decay
rate γcav. In the weak-coupling regime, when g 
 γcav, the
QE experiences spontaneous emission: The probability to find
the QE in the excited-state Pe(t ) decays exponentially in time
with the rate γ0FP (ω0), where FP is the well-known Purcell
factor, which reflects acceleration of the spontaneous emission
due to enhanced local density of states [6–8]. In the single-
mode approximation and assuming that the QE is resonant with
the cavity-mode ωc = ω0, the Purcell factor can be expressed
through the interaction constant via [2]

FP = 4g2

γcavγ0
. (15)

As the interaction constant increases, g ∼ γcav or even g >

γcav, single photons start to oscillate between the emitter and
the mode, giving rise to non-Markovian dynamics of the emit-
ter populationPe(t ), which is a signature of the strong-coupling
regime. Mathematically, strong coupling occurs whenever
separation between the two eigenvalues of Hamiltonian (11)
exceeds (γcav + γ0)/2. In general, they should even exceed
(γcav + γ )/2, where γ = γ0 + γinh is the total decay rate of the
transition, accounting for both free space and inhomogeneous
decay. For simplicity, we will consider γinh = 0 in this paper.
Comparing the two eigenvalues of (11) (assuming that the QE
is resonant with the nanoantenna mode, ω0 = ωc, and γcav 	
γ0), we find that the onset of strong coupling corresponds
to the interaction constant g = γcav/(2

√
2). Correspondingly,

estimating the Purcell factor FP at the onset of strong coupling,
we obtain a convenient threshold condition for strong coupling
in terms of the Purcell factor,

FP (ω0) � γcav

2γ0
. (16)

Typical values of the plasmon lifetime and the QE lifetime lie
on the scale of 10 fs and 1 ns, respectively. The latter equation
thus suggests that FP should be at least on the order of 105 in
order to reach strong coupling with a single QE coupled to a
realistic plasmon resonator.

In order to reach strong coupling, the interaction constant
g should be increased. This can be performed in two different
manners: either by increasing the transition dipole moment μ

of the QE or by increasing the Purcell factor FP . The set of
available QEs is often limited to a few options. Much greater

flexibility is, however, offered by designing the optical cavity
and maximizing the Purcell factor.

Expression (16) allows one to estimate the threshold magni-
tude of the dipole moment μs.c. of a single QE which is required
to reach strong coupling with a given nanoantenna with some
value of FP . To do so, we note that the free space spontaneous
emission rate γ0 in Eq. (16) depends on μ; expressing μ from
this formula yields us the threshold dipole moment magnitude,

μs.c. =
√

3h̄πε0c3γcav

2ω3
0FP

. (17)

This expression can be used to find the optimal geometry
for reaching the strong-coupling regime with a single emitter:
One needs to calculate the Purcell factor and the cavity decay
rate and check if the resulting values are enough to guarantee
strong coupling with a given emitter. However, we underline
that we limit our approach with a point-dipole approximation
for the QE in order to provide a general description for the
single emitter regime. In general the size of the QE leads to
the breakdown of this approximation when it is comparable
to the dimensions of the antenna tips, and recent studies
have presented a time-dependent density functional theory
approach to calculate the coupling g beyond the point-dipole
approximation [68].

B. Comparative study of the nanoantenna geometry

Now we employ the condition (17) to study the feasibility
of reaching the strong-coupling regime in various plasmonic
nanoantennas with single QEs. We will consider three nanoan-
tenna types: (i) a dimer of two nanospheres, (ii) a nanoparticle
on a surface (NPoS), and (iii) a bow-tie nanoantenna. We
also consider two materials from which antennas are made:
gold (Au) and silver (Ag) for the bow tie (resonances in the
other two Ag antennas are strongly shifted to the UV region
which makes them less interesting). Nanometer gaps in these
antennas ensure deeply subwavelength mode volumes and high
Purcell factors lowering the required transition dipole moment.
To study the coupling in these nanoantennas, we calculated
numerically the LDOS spectra using the Lumerical FDTD
solver. The mesh step around the gap where the point source
was located was set to 0.1 nm. Convergence of simulations was
ensured by performing simulations for gradually reducing the
mesh step and monitoring the difference of the result with the
result of the previous simulation.

The maximum of each spectrum is identified as the plas-
monic mode, and a corresponding QE resonant with that mode
is assumed in further calculations. The LDOS spectra for each
geometry considered here are presented in Fig. 2 for 3-nm gaps
in all cases. It is seen that the LDOS of bow-tie nanoantennas
around the bright mode is a single Lorentzian, but this is not
the case for the NPoS and sphere dimers due to the presence of
other strongly nonradiative modes. The calculation shown in
Fig. 2 is then performed for different gap sizes using the same
geometries.

The calculated spectra are then fitted with an effective
Lorentzian function (9) parametrized by the width γcav, the
Jaynes-Cummings coupling g, and the resonance frequency
ωc. Replacing the full LDOS by a single Lorentzian fit works
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x (nm)

y
 (

n
m

)

FIG. 2. (a)–(c) FDTD calculation of the QE-plasmon coupling
|κ (ω)|2 proportional to the LDOS at the center of the gap (solid blue)
and Lorentzian fit of the considered modes (dashed-dotted red). The
calculation is performed for four different geometries. (a) Au and Ag
bow-tie nanoantennas. (b) Au nanosphere dimer. (c) Au NPoS. The
permittivity of Ag and Au was adopted from Ref. [69]. For bow-tie
nanoantennas, triangles with 90-nm side lengths, 50-nm bases, and
10-nm thicknesses were used. For the NPoS, nanospheres with 50-nm
diameters were used. For the dimer, 30-nm nanospheres were used.
The gaps in all cases were set to 3 nm. (d) Spatial map of the total
Purcell factor for an Ag bow-tie nanoantenna with a 3-nm gap at
resonance (∼750 nm) for an electric dipole oriented along the gap.

1 3 5 7 10
100

101

102

J-aggregate

methylene blue, R6G

CdSe QD

WS2

FIG. 3. Minimal dipole moment (17) for reaching the strong-
coupling regime in debyes (D). The calculations are performed for
Au and Ag bow ties, the Au NPoS, and the Au nanosphere dimer.

well for the bow-tie nanoantennas, Figs. 2(a) and 2(b). In the
case of the NPoS and nanosphere dimers, however, the total
LDOS does not feature a Lorentzian behavior. Nevertheless,
for simplicity we fit the LDOS with a Lorentzian peak using
the least-squares method as we are interested in the global
coupling strength between the nanoantenna and the QE.

The LDOS and hence the coupling strength vary with
the position at which the QE is located with respect to the
nanoantenna. This is illustrated in Fig. 2(d) for the Ag bow-tie
nanoantenna with a 3-nm gap for a QE’s dipole moment
oriented along the gap. The Purcell factor reaches the maximal
values close to the antenna edges and quickly decays away from
the edges. This plot also emphasizes that positioning of a QE
exactly in the center of a gap is neither necessary nor optimal for
ensuring the highest LDOS and interaction constant. Having
performed the fitting procedure for each LDOS spectrum, we
now calculate the threshold dipole moment μs.c. of a resonant
QE to reach the strong-coupling regime for each nanoantenna.
The results are presented in Fig. 3. Expectedly, the threshold
dipole moment quickly decreases with shrinking gap for all
antennas. Among all studied geometries, the bow-tie antennas
exhibit the lowest threshold dipole moment, which is due to
the lowest resonance width γcav and a tightly localized electric
field at the tips of the bow-tie nanoantenna. In the same plot
we show horizontal bars corresponding to a few QEs often
employed in the studies of strong light-matter interaction. The
key observation is that QEs, such as excitons in monolayer WS2

and J-aggregates, may allow us to reach strong coupling in the
single emitter limit with bow-tie nanoantennas with gaps as
large as 5 nm. As the gap shrinks down to 1 nm, all four systems
exhibit comparable responses with simple organic molecules,
such as methylene blue, being on the edge of strong coupling.
Note that for gaps smaller than 5 nm, the nonlocal response of
the metal may become pronounced, whereas our calculations
of the coupling strength are based on the local model. This may
have an unfavorable effect on the coupling strength as recent
theoretical efforts suggest [70].

We further inspect the radiative properties of the four
considered geometries. For the Rabi splitting to be clearly
observable in the emission spectrum, the decay of a QE must
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TABLE I. Quantum yield η of an emitter placed in the center of the
gap tuned to the antenna resonance for the four studied nanoantennas.

Nanoantenna NPoS Nanosphere dimer Au bow tie Ag bow tie

η 0.0015 0.0026 0.2796 0.4513

be mostly radiative. This can be quantified by the quantum
yield of the QE,

η = �rad

�tot
, (18)

where �rad is the radiative decay rate of the QE in the vicinity of
the nanoantenna. The quantum yield of an emitter located at the
gap center at the resonance wavelength for each nanoantenana
is presented in Table I. The bow-tie geometry exhibits the
best radiative properties among the studied antennas, orders
of magnitude higher than the NPoS and the nanosphere dimer
do. The spatial dependence of the quantum yield for the Ag
bow tie shown in Fig. 4 suggests that the quantum yield is
sensitive to the emitter position, but even very close to the metal
edges the quantum yield reduces only down to 0.1, which is still
500 to 1000 times higher than the NPoS and the nanosphere
dimer value. Together with the result shown in Fig. 2(d) it
highlights the fact the precise positioning of a QE at a very
specific site around the nanoantenna is not that crucial for
reaching strong coupling as one might anticipate.

C. Single QE nonlinearity in a bow-tie nanoantenna

Finally, to support our claims, we demonstrate the feasibility
of strong coupling with a bow-tie nanoantenna and a single
emitter via simulating the temporal dynamics of the emitter
population. We choose a WS2 exciton with the transition dipole
moment of 50 D [71,72] as a single QE and tune the Ag bow-tie
resonance to the WS2 monolayer exciton transition wavelength
of ≈610 nm. Figure 5 shows the temporal dynamics of the QE
population associated with the Ag bow-tie nanoantenna studied
in Figs. 2 and 3, and clearly shows that at least one Rabi cycle
occurs until the emitter irretrievably decays to the ground state.

Whereas the calculation shown in Fig. 5 is performed con-
sidering a single excitation in the QE as an initial condition, that
is, |ψ (0)〉 = |e〉 ⊗ |0〉, the dynamics can also be determined

FIG. 4. Spatial dependence of the quantum yield of a resonant
emitter interacting with a 3-nm gap Ag bow-tie nanoantenna. The
emitter wavelength is 610 nm, and the dipole moment is oriented in the
y direction. The origin is chosen to be 0, and y = 1.5 nm corresponds
to the tip of one nanoprism.

50 D

FIG. 5. Calculated temporal dynamics of the population of a QE
with a 50-D transition dipole moment corresponding to the WS2

exciton. The antenna geometry is tuned for its resonance to match
the WS2 exciton wavelength of 610 nm.

using the steady-state solution of the master equation (12).
To do so we replace ĤJC with a new Hamiltonian Ĥ ′ =
Ĥ ′

JC + Ĥpump in a rotating frame oscillating with the pump
frequency ωP such that we have the effective RWA terms,

Ĥ ′
JC = �0σ̂+σ̂− + �câ

†â + g (̂a†σ̂− + âσ̂+), (19a)

Ĥpump = E
2

(̂a + â†), (19b)

where �0,c = ω0,c − ωP and E = −μn.a. · E0/h̄ is the Rabi
frequency associated with the pump laser field EP (t ) =
E0 cos ωP t and the effective transition dipole moment of the
nanoantenna μn.a.. The steady state of the density operator is
determined taking the time derivative in (12) being equal to
zero and finding the nontrivial solutions of the equation,

L�s.s. = 0, (20)

L = i[Ĥ ′, •] + γcav (̂a • â† − 1
2 â†â • − 1

2 • â†â) being the su-
peroperator acting on the density operator. The spectra are
then computed using the average formula 〈Â〉 = Tr{�s.s.Â}.

We evaluate the steady-state mode populations in Fig. 6,
for three different quantities: the intensity of the cavity field
〈̂a†â〉, the QE contribution 〈̂σ+σ̂−〉, and their corresponding
polaritonic mixture 〈�̂†

±�̂±〉 where the upper (+) and lower
(−) polariton operators are given by

�̂± = 1√
2

(̂a ± σ̂−). (21)

The mode populations are calculated for three pump Rabi
frequency values of E = (0.1, 1, 2)γcav, and the saturation
phenomenon is shown to happen for the two higher values.
In particular, the plasmonic cavity Lorentzian line shape
is recovered for E = 2γcav, whereas the QE contribution is
reduced and recombines as a single peak for the same value.
We also see the same behavior in the polariton populations
〈�̂†

±�̂±〉, which we display as an interesting way to separate
the lower and upper components in the dynamics.

Finally, we compute the photon statistics for the same
configuration using the g(2)(τ ) function, corresponding to a
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FIG. 6. Steady-state mode populations of a Ag bow tie and single
QE system precedingly studied in Fig. 5 versus pump frequency ωP

for different values of the pump Rabi frequency: E = 0.1γcav (solid
curves), γcav (dashed-dotted curves), and 2γcav (dotted curves). (a)
Plasmonic resonance population 〈̂a†â〉. (b) QE excitation population
〈̂σ+σ̂−〉. (c) Polariton populations 〈�̂†

±�̂±〉 from the lower (gray) and
upper (purple) polaritons. y axes are in units of 1/E2.

Hanbury-Brown-Twiss experimental setup [see Fig. 7(a)],

g(2)(τ ) = 〈̂a†
out (t )̂a†

out (t + τ )̂aout (t + τ )̂aout (t )〉
〈̂a†

out (t )̂aout (t )〉2
, (22)

where we introduced the output photon annihilation operator
âout, whose expression is given by the input-output relation [2],

âout = âin + √
γcav,râ, (23)

where γcav,r is the radiative decay of the nanoantenna. This
function is defined as the probability of detecting a photon
at time t + τ whereas another photon was detected at time t ,
normalized by the probabilities of detecting a single photon
at the same times. Nonclassical features of light are revealed
when g(2)(τ ) < 1, and, in particular, antibunching is observed
when g(2)(0) < 1. In that case, photons tend to be emitted one
by one. Note that the âin term is disregarded as we consider
only the scattered part and that linking expression (23) with the
Purcell regime leads to

√
γcav,r â → √

�radσ̂−. Calculations
of the g(2)(τ ) function are shown in Fig. 7(c) for low pump
(E = 0.1γcav). The red lines show the calculation for the Ag
bow tie coupled to a 50-D QE, and oscillations due to the
QE-plasmon coupling g arise in the statistics, suppressing the
antibunching when the system is pumped at ωP = ωc − g. This
is due to the small splitting observed between the upper and
the lower polariton states, and for larger splitting, it is seen that
the oscillations are faster and averaged into an overall smooth
behavior. However, if the pump is slightly redshifted to the
lower polariton |−1〉 [red dashed-dotted line in Fig. 7(c)], it

start

stop

(a) (b)

(c)

FIG. 7. (a) Hanbury-Brown-Twiss setup: A cavity contain-
ing a QE is coherently pumped with the laser Rabi frequency
E = 0.1γcav at frequency ωP , and the output field is split into
two beams hitting avalanche photodiodes. (b) Linkage pattern
of the single-photon Jaynes-Cummings ladder with the ground-
state |g, 0〉 and the polariton states |±1〉 = �̂

†
±|g, 0〉. The lower

polariton is pumped at frequency ωP = ωc − g. (c) The g(2)(τ )
function for different g/γcav ratios. The red lines correspond to the
Ag bow tie with 50 D.

is seen that g(2)(0) < 1 and therefore a small antibunching is
observed. We emphasize that the calculation of the photon
statistics is performed assuming that it is possible to correlate
the output signals. Nevertheless, the time scale observed here
is on the order of γcavτ ∼ 5, which is about 30 fs. Even though
it is challenging to access g(2)(τ ) at this fast time scale, it
is however interesting to underline the nonclassical nature of
the light emitted by a QE coupled to a nanoantenna. If this is
performed properly, the antibunching can be observed on the
nanosecond to picosecond time scales.

IV. CONCLUSION

To conclude, we have systematically analyzed various
plasmonic nanoantennas in the context of the Rabi split-
ting with single quantum emitters using a fully quantized
electromagnetic-field response. We established the general
condition that can be used to estimate the feasibility of the
strong-coupling regime and applied it to study the required
dipole moment of a single emitter in order to achieve the
strong-coupling regime. We have found that silver and gold
bow-tie nanoantennas present the most favorable structures for
attaining strong coupling with single emitters. The conditions
seem to be especially viable for the case of single excitons
of two-dimensional semiconductors, such as WS2. Finally,
we demonstrated numerically the emergence of single-photon
nonlinearities with the saturation and photon statistics of a
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strongly coupled system made of a QE placed in the gap of a
silver bow-tie nanoantenna using a master equation formalism.
Future research should be aimed at exploring even more benefi-
cial nanoantenna geometries and addressing single excitons in
two-dimensional materials. This opens the perspective for real-
izing broadband photon-photon interactions on the nanoscale.
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