8 research outputs found

    The configurational energy gap between amorphous and crystalline silicon

    Get PDF
    The crystallization enthalpy of pure amorphous silicon (a-Si) and hydrogenated a-Si was measured by differential scanning calorimetry (DSC) for a large set of materials deposited from the vapour phase by different techniques. Although the values cover a wide range (200-480 J/g), the minimum value is common to all the deposition techniques used and close to the predicted minimum strain energy of relaxed a-Si (240 ± 25 J/g). This result gives a reliable value for the configurational energy gap between a-Si and crystalline silicon. An excess of enthalpy above this minimum value can be ascribed to coordination defects

    Ultrafast transient liquid assisted growth of high current density superconducting films

    Get PDF
    The achievement of high growth rates in YBaCuO epitaxial high-temperature superconducting films has become strategic to enable high-throughput manufacturing of long length coated conductors for energy and large magnet applications. We report on a transient liquid assisted growth process capable of achieving ultrafast growth rates (100 nm s −1) and high critical current densities (5 MA cm −2 at 77 K). This is based on the kinetic preference of Ba-Cu-O to form transient liquids prior to crystalline thermodynamic equilibrium phases, and as such is a non-equilibrium approach. The transient liquid-assisted growth process is combined with chemical solution deposition, proposing a scalable method for superconducting tapes manufacturing. Additionally, using colloidal solutions, the growth process is extended towards fabrication of nanocomposite films for enhanced superconducting properties at high magnetic fields. Fast acquisition in situ synchrotron X-ray diffraction and high resolution scanning transmission electron microscopy (STEM) become crucial measurements in disentangling key aspects of the growth process. High throughput manufacturing of long length coated conductors requires fast epitaxial growth of high-temperature superconducting films. Here, Soler et al. report an ultrafast growth rates and high critical current densities of YBaCuO films using a transient liquid-assisted growth method

    Anomalous crystallization of hydrogenated amorphous silicon during fast heating ramps

    Get PDF
    Thermal crystallization experiments carried out using calorimetry on several a-Si:H materials with different microstructures are reported. The samples were crystallized during heating ramps at constant heating rates up to 100 K/min. Under these conditions, crystallization takes place above 700 C and progressively deviates from the standard kinetics. In particular, two crystallization processes were detected in conventional a-Si:H, which reveal an enhancement of the crystallization rate. At100 K/min, such enhancement is consistent with a diminution of the crystallization time by a factor of 7. In contrast, no systematic variation of the resulting grain size was observed. Similar behavior was also detected in polymorphous silicon and silicon nanoparticles, thus showing that it is characteristic of a variety of hydrogenated amorphous silicon materials

    Anomalous crystallization of hydrogenated amorphous silicon during fast heating ramps

    No full text
    Thermal crystallization experiments carried out using calorimetry on several a-Si:H materials with different microstructures are reported. The samples were crystallized during heating ramps at constant heating rates up to 100 K/min. Under these conditions, crystallization takes place above 700 C and progressively deviates from the standard kinetics. In particular, two crystallization processes were detected in conventional a-Si:H, which reveal an enhancement of the crystallization rate. At100 K/min, such enhancement is consistent with a diminution of the crystallization time by a factor of 7. In contrast, no systematic variation of the resulting grain size was observed. Similar behavior was also detected in polymorphous silicon and silicon nanoparticles, thus showing that it is characteristic of a variety of hydrogenated amorphous silicon materials

    Calorimetry of dehydrogenation and dangling-bond recombination in several hydrogenated amorphous silicon materials

    No full text
    Differential scanning calorimetry (DSC) was used to study the dehydrogenation processes that take place in three hydrogenated amorphous silicon materials: nanoparticles, polymorphous silicon, and conventional device-quality amorphous silicon. Comparison of DSC thermograms with evolved gas analysis (EGA) has led to the identification of four dehydrogenation processes arising from polymeric chains (A), SiH groups at the surfaces of internal voids (A'), SiH groups at interfaces (B), and in the bulk (C). All of them are slightly exothermic with enthalpies below 50 meV/H atoms , indicating that, after dissociation of any SiH group, most dangling bonds recombine. The kinetics of the three low-temperature processes [with DSC peak temperatures at around 320 (A),360 (A'), and 430°C (B)] exhibit a kinetic-compensation effect characterized by a linea relationship between the activation entropy and enthalpy, which constitutes their signature. Their Si-H bond-dissociation energies have been determined to be E (Si-H)0=3.14 (A), 3.19 (A'), and 3.28 eV (B). In these cases it was possible to extract the formation energy E(DB) of the dangling bonds that recombine after Si-H bond breaking [0.97 (A), 1.05 (A'), and 1.12 (B)]. It is concluded that E(DB) increases with the degree of confinement and that E(DB)>1.10 eV for the isolated dangling bond in the bulk. After Si-H dissociation and for the low-temperature processes, hydrogen is transported in molecular form and a low relaxation of the silicon network is promoted. This is in contrast to the high-temperature process for which the diffusion of H in atomic form induces a substantial lattice relaxation that, for the conventional amorphous sample, releases energy of around 600 meV per H atom. It is argued that the density of sites in the Si network for H trapping diminishes during atomic diffusio

    The configurational energy gap between amorphous and crystalline silicon

    No full text
    The crystallization enthalpy of pure amorphous silicon (a-Si) and hydrogenated a-Si was measured by differential scanning calorimetry (DSC) for a large set of materials deposited from the vapour phase by different techniques. Although the values cover a wide range (200-480 J/g), the minimum value is common to all the deposition techniques used and close to the predicted minimum strain energy of relaxed a-Si (240 ± 25 J/g). This result gives a reliable value for the configurational energy gap between a-Si and crystalline silicon. An excess of enthalpy above this minimum value can be ascribed to coordination defects
    corecore