48 research outputs found

    Impact of Glutathione on Wines Oxidative Stability: A Combined Sensory and Metabolomic Study

    Get PDF
    This paper is a comprehensive study regarding the role of glutathione as a natural antioxidant on white wines aging potential. It includes sensory and ultrahigh resolution mass spectrometry (FTICR-MS) metabolomics of aged chardonnay wines from 2008 to 2009 vintages, made after glutathione spiking at alcoholic fermentation or bottling. The closure effect was also considered. The sensory analysis revealed a clear vintage, closure and glutathione effect on wines oxidative character after several years of bottle aging. Spearman rank correlation was applied to link the sensory analysis and the exact mass information from FT-ICR-MS. FTICR–MS along with multivariate statistical analyses put in evidence that glutathione efficiency against wines sensory oxidative stability is related to wines antioxidant metabolome consisting of N- and S- containing compounds like amino acids, aromatic compounds and peptides. The chemical composition and origin of wines antioxidant metabolome suggests that its management since the very beginning of the vinification process is a key factor to estimate wines aging potential

    Impact of Saccharomyces cerevisiae yeast inoculation mode on wine composition

    Get PDF
    Inoculation modes are known to affect yeast behavior. Here, we characterized the impact of ADY and pre-culturing on the composition of the resulting wine, fermented by four commercial strains of Saccharomyces cerevisiae. Classical oenological parameters were not affected by the yeast inoculation mode. Using an untargeted metabolomic approach, a significant distinction in wine composition was noted regardless of the strain between the two inoculation modes, each associated with a specific metabolomic signature. 218 and 895 biomarkers were annotated, respectively, for ADYs associated with the preservation of wine polyphenols, and for pre-cultures related to the modulation of yeast nitrogen metabolism. Volatilome analysis revealed that the ester family was that most impacted by the inoculation mode whatever the strain. Ester production was enhanced in ADY condition. For the first time, the complete reprogramming of the yeast metabolism was revealed as a function of yeast preparation, which significantly impacts its volatilome and exometabolome

    Bio-Protection as an Alternative to Sulphites: Impact on Chemical and Microbial Characteristics of Red Wines

    Get PDF
    In wine, one method of limiting the addition of sulphites, a harmful and allergenic agent, is bio-protection. This practice consists of the early addition of microorganisms on grape must before fermentation. Non-Saccharomyces yeasts have been proposed as an interesting alternative to sulphite addition. However, scientific data proving the effectiveness of bio-protection remains sparse. This study provides the first analysis of the chemical and microbiological effects of a Metschnikowia pulcherrima strain inoculated at the beginning of the red winemaking process in three wineries as an alternative to sulphiting. Like sulphiting, bio-protection effectively limited the growth of spoilage microbiota and had no influence on the phenolic compounds protecting musts and wine from oxidation. The bio-protection had no effect on the volatile compounds and the sensory differences were dependent on the experimental sites. However, a non-targeted metabolomic analysis by FTICR-MS highlighted a bio-protection signature

    Different Wines from Different Yeasts? 'Saccharomyces cerevisiae Intraspecies Differentiation by Metabolomic Signature and Sensory Patterns in Wine'

    Get PDF
    Alcoholic fermentation is known to be a key stage in the winemaking process that directly impacts the composition and quality of the final product. Twelve wines were obtained from fermentations of Chardonnay must made with twelve different commercial wine yeast strains of Saccharomyces cerevisiae. In our study, FT-ICR-MS, GC-MS, and sensory analysis were combined with multivariate analysis. Ultra-high-resolution mass spectrometry (uHRMS) was able to highlight hundreds of metabolites specific to each strain from the same species, although they are characterized by the same technological performances. Furthermore, the significant involvement of nitrogen metabolism in this differentiation was considered. The modulation of primary metabolism was also noted at the volatilome and sensory levels. Sensory analysis allowed us to classify wines into three groups based on descriptors associated with white wine. Thirty-five of the volatile compounds analyzed, including esters, medium-chain fatty acids, superior alcohols, and terpenes discriminate and give details about differences between wines. Therefore, phenotypic differences within the same species revealed metabolic differences that resulted in the diversity of the volatile fraction that participates in the palette of the sensory pattern. This original combination of metabolomics with the volatilome and sensory approaches provides an integrative vision of the characteristics of a given strain. Metabolomics shine the new light on intraspecific discrimination in the Saccharomyces cerevisiae species Keywords: yeast; Saccharomyces cerevisiae; Chardonnay wine; metabolomic; volatile compounds; sensory analysi

    Multiparametric Approach to Interactions between <i>Saccharomyces cerevisiae</i> and <i>Lachancea thermotolerans</i> during Fermentation

    No full text
    The aim of a significant part of current wine technology research is to better understand and monitor mixed culture fermentations and optimize the microbiological processes and characteristics of the final wine. In this context, the yeast couple formed by Lachancea thermotolerans and Saccharomyces cerevisiae is of particular interest. The diverse results observed in the literature have shown that wine characteristics are dependent on both interactions between yeasts and environmental and fermentation parameters. Here, we took a multiparametric approach to study the impact of fermentation parameters on three different but related aspects of wine fermentation: population dynamics, fermentation, and volatile compound production. An experimental design was used to assess the effects of four independent factors (temperature, oxygenation, nitrogen content, inoculum ratio) on variables representing these three aspects. Temperature and, to a lesser extent, oxygenation and the inoculum ratio, were shown to constitute key factors in optimizing the presence of Lachancea thermotolerans during fermentation. The inoculum ratio also appeared to greatly impact lactic acid production, while the quantity of nitrogen seemed to be involved more in the management of aroma compound production. These results showed that a global approach to mixed fermentations is not only pertinent, but also constitutes an important tool for controlling them

    Multiparametric Approach to Interactions between Saccharomyces cerevisiae and Lachancea thermotolerans during Fermentation

    No full text
    The aim of a significant part of current wine technology research is to better understand and monitor mixed culture fermentations and optimize the microbiological processes and characteristics of the final wine. In this context, the yeast couple formed by Lachancea thermotolerans and Saccharomyces cerevisiae is of particular interest. The diverse results observed in the literature have shown that wine characteristics are dependent on both interactions between yeasts and environmental and fermentation parameters. Here, we took a multiparametric approach to study the impact of fermentation parameters on three different but related aspects of wine fermentation: population dynamics, fermentation, and volatile compound production. An experimental design was used to assess the effects of four independent factors (temperature, oxygenation, nitrogen content, inoculum ratio) on variables representing these three aspects. Temperature and, to a lesser extent, oxygenation and the inoculum ratio, were shown to constitute key factors in optimizing the presence of Lachancea thermotolerans during fermentation. The inoculum ratio also appeared to greatly impact lactic acid production, while the quantity of nitrogen seemed to be involved more in the management of aroma compound production. These results showed that a global approach to mixed fermentations is not only pertinent, but also constitutes an important tool for controlling them

    Yeast–Yeast Interactions: Mechanisms, Methodologies and Impact on Composition

    No full text
    International audienceDuring the winemaking process, alcoholic fermentation is carried out by a consortium of yeasts in which interactions occurs. The consequences of these interactions on the wine matrix have been widely described for several years with the aim of controlling the winemaking process as well as possible. In this review, we highlight the wide diversity of methodologies used to study these interactions, and their underlying mechanisms and consequences on the final wine composition and characteristics. The wide variety of matrix parameters, yeast couples, and culture conditions have led to contradictions between the results of the different studies considered. More recent aspects of modifications in the composition of the matrix are addressed through different approaches that have not been synthesized recently. Non-volatile and volatile metabolomics, as well as sensory analysis approaches are developed in this paper. The description of the matrix composition modification does not appear sufficient to explain interaction mechanisms, making it vital to take an integrated approach to draw definite conclusions on them

    Usage of FT-ICR-MS Metabolomics for Characterizing the Chemical Signatures of Barrel-Aged Whisky

    No full text
    Whisky can be described as a complex matrix integrating the chemical history from the fermented cereals, the wooden barrels, the specific distillery processes, aging, and environmental factors. In this study, using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), we analyzed 150 whisky samples from 49 different distilleries, 7 countries, and ranging from 1 day new make spirit to 43 years of maturation with different types of barrel. Chemometrics revealed the unexpected impact of the wood history on the distillate's composition during barrel aging, regardless of the whisky origin. Flavonols, oligolignols, and fatty acids are examples of important chemical signatures for Bourbon casks, whereas a high number of polyphenol glycosides, including for instance quercetin-glucuronide or myricetin-glucoside as potential candidates, and carbohydrates would discriminate Sherry casks. However, the comparison of barrel aged rums and whiskies revealed specific signatures, highlighting the importance of the initial composition of the distillate and the distillery processes

    How subtle is the "terroir" effect? Chemistry-related signatures of two "climats de Bourgogne".

    No full text
    The chemical composition of grape berries is influenced by various environmental conditions often considered to be representative of a "terroir". If grapes from a given terroir are assumed to reflect this origin in their chemical compositions, the corresponding wine should also reflect it. The aim of this work was therefore to reveal the "terroir" expression within the chemodiversity of grapes and related wines, using ultrahigh-resolution mass spectrometry. Grapes and corresponding wines, from two distinct - though very proximate - terroirs of Burgundy were analyzed over three vintages (2010, 2011 and 2012). Ultrahigh-resolution mass spectrometry and ultra-high performance liquid chromatography were used as untargeted and targeted approaches to discriminate complex chemical fingerprints for vintages, classes (wines, skins or musts), and terroirs. Statistical analyses revealed that even if vintages have the most significant impact on fingerprints, the most significant terroir differences are seen in the grapes of a given vintage

    Electrochemical triggering of the Chardonnay wine metabolome

    Get PDF
    International audienceOxidation of wine upon bottle ageing is a crucial matter of concern for the qualitative long-term storage of white wines. However, understanding the various molecular mechanisms potentially involved, which can impact the wine composition, requires that top-down analytical strategies are implemented. Here, we report the analysis of bottle aged Chardonnay wines made from the same must, but differing by the amount of SO2 initially added to the must at pressing (0 and 8 g.hL-1). Metabolomics fingerprints obtained from electrochemical simulation of oxidative reactions were obtained by the coupling of either on-line or off-line electrochemical oxidation to FT-ICR-MS detection. We reveal that, whatever the electrochemical DC voltage, wines with initial SO2 addition displayed molecular fingerprints, which remained more similar to the non-oxidized wine without initial SO2 addition. We further show that a diversity of sulfur-containing compounds appeared to be the most sensitive to oxidation, whereas nitrogen-containing compounds were mostly formed
    corecore