63 research outputs found

    A Photoreceptor Contributes to the Natural Variation of Diapause Induction in Daphnia magna

    Get PDF
    Diapause is an adaptation that allows organisms to survive harsh environmental conditions. In species occurring over broad habitat ranges, both the timing and the intensity of diapause induction can vary across populations, revealing patterns of local adaptation. Understanding the genetic architecture of this fitness-related trait would help clarify how populations adapt to their local environments. In the cyclical parthenogenetic crustacean Daphnia magna, diapause induction is a phenotypic plastic life history trait linked to sexual reproduction, as asexual females have the ability to switch to sexual reproduction and produce resting stages, their sole strategy for surviving habitat deterioration. We have previously shown that the induction of resting stage production correlates with changes in photoperiod that indicate the imminence of habitat deterioration and have identified a Quantitative Trait Locus (QTL) responsible for some of the variation in the induction of resting stages. Here, new data allows us to anchor the QTL to a large scaffold and then, using a combination of a new mapping panel, targeted association mapping and selection analysis in natural populations, to identify candidate genes within the QTL. Our results show that variation in a rhodopsin photoreceptor gene plays a significant role in the variation observed in resting stage induction. This finding provides a mechanistic explanation for the link between diapause and day-length perception that has been suggested in diverse arthropod taxa

    Experimentally heat‐induced transposition increases drought tolerance in Arabidopsis thaliana

    Full text link
    Eukaryotic genomes contain a vast diversity of transposable elements (TEs). Formerly often described as selfish and parasitic DNA sequences, TEs are now recognized as a source of genetic diversity and powerful drivers of evolution. Yet, because their mobility is tightly controlled by the host, studies experimentally assessing how fast TEs may mediate the emergence of adaptive traits are scare. We exposed Arabidopsis thaliana high-copy TE lines (hcLines) with up to ~8 fold increased copy numbers of the heat-responsive ONSEN TE to drought as a straightforward and ecologically highly relevant selection pressure. We provide evidence for increased drought tolerance in five out of the 23 tested hcLines and further pinpoint one of the causative mutations to an exonic insertion of ONSEN in the ribose-5-phosphate-isomerase 2 gene. The resulting loss-of-function mutation caused a decreased rate of photosynthesis, plant size and water consumption. Overall, we show that the heat-induced transposition of a low-copy TE increases phenotypic diversity and leads to the emergence of drought-tolerant individuals in Arabidopsis thaliana. This is one of the rare empirical examples substantiating the adaptive potential of mobilized stress-responsive TEs in eukaryotes. Our work demonstrates the potential of TE-mediated loss-of-function mutations in stress adaptation

    Correction to: Brachypodium: 20 years as a grass biology model system; the way forward?:(Trends in Plant Science 27, 1002–1016, 2022)

    Get PDF
    It has been 20 years since Brachypodium distachyon was suggested as a model grass species, but ongoing research now encompasses the entire genus. Extensive Brachypodium genome sequencing programmes have provided resources to explore the determinants and drivers of population diversity. This has been accompanied by cytomolecular studies to make Brachypodium a platform to investigate speciation, polyploidisation, perenniality, and various aspects of chromosome and interphase nucleus organisation. The value of Brachypodium as a functional genomic platform has been underscored by the identification of key genes for development, biotic and abiotic stress, and cell wall structure and function. While Brachypodium is relevant to the biofuel industry, its impact goes far beyond that as an intriguing model to study climate change and combinatorial stress

    Migration without interbreeding: Evolutionary history of a highly selfing Mediterranean grass inferred from whole genomes

    Full text link
    Wild plant populations show extensive genetic subdivision and are far from the ideal of panmixia which permeates population genetic theory. Understanding the spatial and temporal scale of population structure is therefore fundamental for empirical population genetics –and of interest in itself, as it yields insights into the history and biology of a species. In this study we extend the genomic resources for the wild Mediterranean grass Brachypodium distachyon to investigate the scale of population structure and its underlying history at whole-genome resolution. A total of 86 accessions were sampled at local and regional scales in Italy and France, which closes a conspicuous gap in the collection for this model organism. The analysis of 196 accessions, spanning the Mediterranean from Spain to Iraq, suggests that the interplay of high selfing and seed dispersal rates has shaped genetic structure in B. distachyon. At the continental scale, the evolution in B. distachyon is characterized by the independent expansion of three lineages during the Upper Pleistocene. Today, these lineages may occur on the same meadow yet do not interbreed. At the regional scale, dispersal and selfing interact and maintain high genotypic diversity, thus challenging the textbook notion that selfing in finite populations implies reduced diversity. Our study extends the population genomic resources for B. distachyon and suggests that an important use of this wild plant model is to investigate how selfing and dispersal, two processes typically studied separately, interact in colonizing plant species
    corecore