34 research outputs found

    Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management

    Get PDF
    Functional foods contain biologically active ingredients associated with physiological health benefits for preventing and managing chronic diseases, such as type 2 diabetes mellitus (T2DM). A regular consumption of functional foods may be associated with enhanced anti-oxidant, anti-inflammatory, insulin sensitivity, and anti-cholesterol functions, which are considered integral to prevent and manage T2DM. Components of the Mediterranean diet (MD)—such as fruits, vegetables, oily fish, olive oil, and tree nuts—serve as a model for functional foods based on their natural contents of nutraceuticals, including polyphenols, terpenoids, flavonoids, alkaloids, sterols, pigments, and unsaturated fatty acids. Polyphenols within MD and polyphenol-rich herbs—such as coffee, green tea, black tea, and yerba maté—have shown clinically-meaningful benefits on metabolic and microvascular activities, cholesterol and fasting glucose lowering, and anti-inflammation and anti-oxidation in high-risk and T2DM patients. However, combining exercise with functional food consumption can trigger and augment several metabolic and cardiovascular protective benefits, but it is under-investigated in people with T2DM and bariatric surgery patients. Detecting functional food benefits can now rely on an “omics” biological profiling of individuals’ molecular, genetics, transcriptomics, proteomics, and metabolomics, but is under-investigated in multi-component interventions. A personalized approach for preventing and managing T2DM should consider biological and behavioral models, and embed nutrition education as part of lifestyle diabetes prevention studies. Functional foods may provide additional benefits in such an approach

    Obesity and dental decay: inference on the role of dietary sugar.

    Get PDF
    OBJECTIVE:To evaluate the relationship of children's obesity and dental decay. METHODS:We measured parameters related to obesity and dental decay in 8,275 4(th) and 5(th) grade Kuwaiti children (average age = 11.36 years) in a cross-sectional study. First to determine body weight, height, age for computation of BMI . Second, to determine numbers of teeth, numbers of fillings and numbers of untreated decayed teeth to determine extent and severity of dental disease. From these measurements, we computed measures of dental decay in children from four body weight categories; obese, overweight, normal healthy weight and underweight children. RESULTS:The percentage of children with decayed or filled teeth varied inversely with the body weight category. The percentage of decayed or filled teeth decreased from 15.61% (n=193) in underweight children, to 13.03% (n=4,094) in normal healthy weight children, to 9.73% (n=1,786) in overweight children to 7.87% (n=2,202) in obese children. Differences between all groups were statistically significant. Male children in this population had more dental decay than female children but the reduction of tooth decay as a function of BMI was greater in male children. CONCLUSIONS:The finding of an inverse obesity-dental decay relationship contradicts the obesity-sugar and the obesity-dental decay relationship hypotheses. Sugar is well recognized as necessary and sufficient for dental decay. Sugar is also hypothesized to be a leading co-factor in obesity. If the later hypothesis is true, one would expect dental decay to increase with obesity. This was not found. The reasons for this inverse relationship are not currently clear

    Unhealthy Phenotype as Indicated by Salivary Biomarkers: Glucose, Insulin, VEGF-A, and IL-12p70 in Obese Kuwaiti Adolescents

    No full text
    Objective. Here, we investigated the relationships between obesity and the salivary concentrations of insulin, glucose, and 20 metabolic biomarkers in Kuwaiti adolescents. Previously, we have shown that certain salivary metabolic markers can act as surrogates for blood concentrations. Methods. Salivary samples of whole saliva were collected from 8,317 adolescents. Salivary glucose concentration was measured by a high-sensitivity glucose oxidase method implemented on a robotic chemical analyzer. The concentration of salivary insulin and 20 other metabolic biomarkers was assayed in 744 randomly selected saliva samples by multiplexed bead-based immunoassay. Results. Obesity was seen in 26.5% of the adolescents. Salivary insulin predicting hyperinsulinemia occurred in 4.3% of normal-weight adolescents, 8.3% of overweight adolescents, and 25.7% of obese adolescents (p<0.0001). Salivary glucose predicting hyperglycemia was found in only 3% of obese children and was not predictive (p=0.89). Elevated salivary glucose and insulin occurring together was associated with elevated vascular endothelial growth factor and reduced salivary interleukin-12. Conclusion. Considering the surrogate nature of salivary insulin and glucose, this study suggests that elevated insulin may be a dominant sign of metabolic disease in adolescent populations. It also appears that a proangiogenic environment may accompany elevated glucose in obese adolescents

    VEGF-A, and IL-12p70 in Obese Kuwaiti Adolescents

    No full text
    Objective. Here, we investigated the relationships between obesity and the salivary concentrations of insulin, glucose, and 20 metabolic biomarkers in Kuwaiti adolescents. Previously, we have shown that certain salivary metabolic markers can act as surrogates for blood concentrations. Methods. Salivary samples of whole saliva were collected from 8,317 adolescents. Salivary glucose concentration was measured by a high-sensitivity glucose oxidase method implemented on a robotic chemical analyzer. The concentration of salivary insulin and 20 other metabolic biomarkers was assayed in 744 randomly selected saliva samples by multiplexed bead-based immunoassay. Results. Obesity was seen in 26.5% of the adolescents. Salivary insulin predicting hyperinsulinemia occurred in 4.3% of normal-weight adolescents, 8.3% of overweight adolescents, and 25.7% of obese adolescents ( &lt; 0.0001). Salivary glucose predicting hyperglycemia was found in only 3% of obese children and was not predictive ( = 0.89). Elevated salivary glucose and insulin occurring together was associated with elevated vascular endothelial growth factor and reduced salivary interleukin-12. Conclusion. Considering the surrogate nature of salivary insulin and glucose, this study suggests that elevated insulin may be a dominant sign of metabolic disease in adolescent populations. It also appears that a proangiogenic environment may accompany elevated glucose in obese adolescents

    The salivary microbiome is altered in the presence of a high salivary glucose concentration

    No full text
    <div><p>Background</p><p>Type II diabetes (T2D) has been associated with changes in oral bacterial diversity and frequency. It is not known whether these changes are part of the etiology of T2D, or one of its effects.</p><p>Methods</p><p>We measured the glucose concentration, bacterial counts, and relative frequencies of 42 bacterial species in whole saliva samples from 8,173 Kuwaiti adolescents (mean age 10.00 ± 0.67 years) using DNA probe analysis. In addition, clinical data related to obesity, dental caries, and gingivitis were collected. Data were compared between adolescents with high salivary glucose (HSG; glucose concentration ≥ 1.0 mg/d, n = 175) and those with low salivary glucose (LSG, glucose concentration < 0.1 mg/dL n = 2,537).</p><p>Results</p><p>HSG was associated with dental caries and gingivitis in the study population. The overall salivary bacterial load in saliva decreased with increasing salivary glucose concentration. Under HSG conditions, the bacterial count for 35 (83%) of 42 species was significantly reduced, and relative bacterial frequencies in 27 species (64%) were altered, as compared with LSG conditions. These alterations were stronger predictors of high salivary glucose than measures of oral disease, obesity, sleep or fitness.</p><p>Conclusions</p><p>HSG was associated with a reduction in overall bacterial load and alterations to many relative bacterial frequencies in saliva when compared with LSG in samples from adolescents. We propose that hyperglycemia due to obesity and/or T2D results in HSG and subsequent acidification of the oral environment, leading to a generalized perturbation in the oral microbiome. This suggests a basis for the observation that hyperglycemia is associated with an increased risk of dental erosion, dental caries, and gingivitis. We conclude that HSG in adolescents may be predicted from salivary microbial diversity or frequency, and that the changes in the oral microbial composition seen in adolescents with developing metabolic disease may the consequence of hyperglycemia.</p></div
    corecore