4 research outputs found

    Simultaneous adsorption of Hg 2+

    No full text

    Synthesis of an IRMOF-1@SiO<sub>2</sub> Core–Shell and Amino-Functionalization with APTES for the Adsorption of Urea and Creatinine Using a Fixed-Bed Column Study

    No full text
    Kidney dysfunction is a clinical disease that disables the kidneys to remove the waste products and uremic toxins from the circulation and may lead to fatal kidney failure. Hemodialysis is advantageous in this circumstance since it prevents the accumulation of waste products in the body and facilitates the removal of uremic toxins. However, hemodialysis cannot entirely remove some uremic toxins, such as urea and creatinine. In this paper, a high-performance fixed-bed column for urea and creatinine removal was offered. As a result, a MOF layer was built on SiO2, which was then amino-functionalized using APTES. Numerous assays were used to characterize the final adsorbent. The adsorption of urea and creatinine was evaluated in batch and continuous conditions. Thus, it was demonstrated that the adsorption behavior of A(0.2)-IRMOF-1@SiO2 followed the Langmuir isotherm, and it exhibited the maximum adsorption capacity. The batch experiment determined that urea and creatinine had an adsorption capacity of 1325.73 and 625.00 mg·g–1, respectively. The adsorption capacity was increased, which was due to the presence of amino groups (APTES) on the MOF surface. The continuous operation was evaluated using the A(0.2)-IRMOF-1@SiO2 fixed-bed column. Thomas and Nelson’s models were examined to achieve a better understanding of the adsorption behaviors. The A(0.2)-IRMOF-1@SiO2 fixed-bed column successfully removed 92.57% of urea and 80.47% of creatinine. The separation factor for urea in comparison to creatinine was 2.40 in the A(0.2)-IRMOF-1@SiO2 fixed-bed column
    corecore