530 research outputs found

    Power spectra of velocities and magnetic fields on the solar surface and their dependence on the unsigned magnetic flux density

    Full text link
    We have performed power spectral analysis of surface temperatures, velocities, and magnetic fields, using spectro-polarimetric data taken with the Hinode Solar Optical Telescope. When we make power spectra in a field-of-view covering the super-granular scale, kinetic and thermal power spectra have a prominent peak at the granular scale while the magnetic power spectra have a broadly distributed power over various spatial scales with weak peaks at both the granular and supergranular scales. To study the power spectra separately in internetwork and network regions, power spectra are derived in small sub-regions extracted from the field-of-view. We examine slopes of the power spectra using power-law indices, and compare them with the unsigned magnetic flux density averaged in the sub-regions. The thermal and kinetic spectra are steeper than the magnetic ones at the sub-granular scale in the internetwork regions, and the power-law indices differ by about 2. The power-law indices of the magnetic power spectra are close to or smaller than -1 at that scale, which suggests the total magnetic energy mainly comes from either the granular scale magnetic structures or both the granular scale and smaller ones contributing evenly. The slopes of the thermal and kinetic power spectra become less steep with increasing unsigned flux density in the network regions. The power-law indices of all the thermal, kinetic, and magnetic power spectra become similar when the unsigned flux density is larger than 200 Mx cm^-2.Comment: 9 pages, 6 figures, accepted for publication in Ap

    Acoustic Events in the Solar Atmosphere from Hinode/SOT NFI observations

    Full text link
    We investigate the properties of acoustic events (AEs), defined as spatially concentrated and short duration energy flux, in the quiet sun using observations of a 2D field of view (FOV) with high spatial and temporal resolution provided by the Solar Optical Telescope (SOT) onboard \textit{Hinode}. Line profiles of Fe \textsc{i} 557.6 nm were recorded by the Narrow band Filter Imager (NFI) on a 82"×82"82" \times 82" FOV during 75 min with a time step of 28.75 s and 0.08"" pixel size. Vertical velocities were computed at three atmospheric levels (80, 130 and 180 km) using the bisector technique allowing the determination of energy flux in the range 3-10 mHz using two complementary methods (Hilbert transform and Fourier power spectra). Horizontal velocities were computed using local correlation tracking (LCT) of continuum intensities providing divergences. The net energy flux is upward. In the range 3-10 mHz, a full FOV space and time averaged flux of 2700 W m2^{-2} (lower layer 80-130 km) and 2000 W m2^{-2} (upper layer 130-180 km) is concentrated in less than 1% of the solar surface in the form of narrow (0.3"") AE. Their total duration (including rise and decay) is of the order of 10310^{3} s. Inside each AE, the mean flux is 1.61051.6 10^{5} W m2^{-2} (lower layer) and 1.21051.2 10^{5} W m2^{-2} (upper). Each event carries an average energy (flux integrated over space and time) of 2.510192.5 10^{19} J (lower layer) to 1.910191.9 10^{19} J (upper). More than 10610^{6} events could exist permanently on the Sun, with a birth and decay rate of 3500 s1^{-1}. Most events occur in intergranular lanes, downward velocity regions, and areas of converging motions.Comment: 18 pages, 10 figure

    Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    Full text link
    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1" diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 < Z < 26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.Comment: 24 pages, 19 figure

    Excitation of stellar p-modes by turbulent convection : 2. The Sun

    Full text link
    Acoustic power and oscillation amplitudes of radial oscillations computed for a solar model are compared with solar seismic observations. The oscillations are assumed stochastically excited by turbulence. The numerical computations are based upon a theoretical formulation of the power going into solar like oscillation modes as proposed by Samadi et al. (2000) in a companion paper. This formulation allows to investigate several assumptions concerning properties of the stellar turbulence. We find that the entropy source plays a dominant role in the stochastic excitation compared with the Reynold stress source in agreement with Goldreich et al. (1994). We consider several turbulent kinetic energy spectra suggested by different observations of the solar granulation. Differences between turbulent spectra manifest themselves by large differences in the computed oscillation powers at high oscillation frequency. Two free parameters which are introduced in the description of the turbulence enter the expression for the acoustic power. These parameters are adjusted in order to fit to the solar observations of the surface velocity oscillations. The best fit is obtained with the kinetic energy spectrum deduced from the observations of the solar granulation by Nesis et al. (1993); the corresponding adjusted parameters are found to be compatible with the theoretical upper limit which can be set on these parameters. The adopted theoretical approach improves the agreement between solar seismic observations and numerical results.Comment: 11 pages, 11 figures, accepted for publication in A&

    3D evolution of a filament disappearance event observed by STEREO

    Full text link
    A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the southern hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories in particular by THEMIS. One day before the disappearance, Hα\alpha observations showed up and down flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4 degrees, showed quite different views of this untwisting flux rope in He II 304 \AA\ images. Here, we reconstruct the 3D geometry of the filament during its eruption phase using STEREO EUV He II 304 \AA\ images and find that the filament was highly inclined to the solar normal. The He II 304 \AA\ movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km s1^{-1}, during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe XII 195 \AA\ images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope

    Multiscale magnetic underdense regions on the solar surface: Granular and Mesogranular scales

    Get PDF
    The Sun is a non-equilibrium dissipative system subjected to an energy flow which originates in its core. Convective overshooting motions create temperature and velocity structures which show a temporal and spatial evolution. As a result, photospheric structures are generally considered to be the direct manifestation of convective plasma motions. The plasma flows on the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns which are observed as a variety of multiscale magnetic patterns. High resolution magnetograms of quiet solar surface revealed the presence of magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales we used a "voids" detection method. The computed voids distribution shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at 5-10 Mm mesogranular scales. The absence of preferred scales of organization in the 2-10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape

    Small-scale solar magnetic fields

    Get PDF
    As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure
    corecore