379 research outputs found
Controlling chaos in spatially extended beam-plasma system by the continuous delayed feedback
In present paper we discuss the control of complex spatio-temporal dynamics
in a {spatially extended} non-linear system (fluid model of Pierce diode) based
on the concepts of controlling chaos in the systems with few degrees of
freedom. A presented method is connected with stabilization of unstable
homogeneous equilibrium state and the unstable spatio-temporal periodical
states analogous to unstable periodic orbits of chaotic dynamics of the systems
with few degrees of freedom. We show that this method is effective and allows
to achieve desired regular dynamics chosen from a number of possible in the
considered system.Comment: 12 pages, 12 figure
Development of Functional Microfold (M) Cells from Intestinal Stem Cells in Primary Human Enteroids.
Background & aimsIntestinal microfold (M) cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs), and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.MethodsHuman intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.ResultsFunctional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2) in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.ConclusionsHuman intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an in vitro setting. We anticipate that this model can be used to generate large numbers of M cells for further functional studies of these key cells of intestinal immune induction and their impact on controlling enteric pathogens and the intestinal microbiome
Active Vibration Control Device
An active vibration control device for controlling vibration in a cantilevered member and a method for the same are disclosed. The device is comprised of a cantilevered member having a longitudinal axis comprising a sensor mounted near the free end of the member to measure motion of the member in a transverse direction and to produce a corresponding signal. A force generating assembly is mounted to the member near the free end to oppose the measured motion with a force thereby minimizing subsequent motion along the transverse axis caused by vibration
Properties of an acid-tolerant, persistent Cheddar cheese isolate, Lacticaseibacillus paracasei GCRL163
The distinctive flavours in hard cheeses are attributed largely to the activity of nonstarter lactic acid bacteria (NSLAB) which dominate the cheese matrix during maturation after lactose is consumed. Understanding how different strains of NSLAB survive, compete, and scavenge available nutrients is fundamental to selecting strains as potential adjunct starters which may influence product traits. Three Lacticaseibacillus paracasei isolates which dominated at different stages over 63-week maturation periods of Australian Cheddar cheeses had the same molecular biotype. They shared many phenotypic traits, including salt tolerance, optimum growth temperature, growth on N-acetylglucosamine and N-acetylgalactosamine plus delayed growth on D-ribose, carbon sources likely present in cheese due to bacterial autolysis. However, strains 124 and 163 (later named GCRL163) survived longer at low pH and grew on D-tagatose and D-mannitol, differentiating this phenotype from strain 122. When cultured on growth-limiting lactose (0.2%, wt/vol) in the presence of high concentrations of L-leucine and other amino acids, GCRL163 produced, and subsequently consumed lactate, forming acetic and formic acids, and demonstrated temporal accumulation of intermediates in pyruvate metabolism in long-term cultures. Strain GCRL163 grew in Tween 80-tryptone broths, a trait not shared by all L. casei-group dairy isolates screened in this study. Including citrate in this medium stimulated growth of GCRL163 above citrate alone, suggesting cometabolism of citrate and Tween 80. Proteomic analysis of cytosolic proteins indicated that growth in Tween 80 produced a higher stress state and increased relative abundance of three cell envelope proteinases (CEPs) (including PrtP and Dumpy), amongst over 230 differentially expressed proteins
Developing a methodology towards sustainable PCD compact core drilling on planet Mars
ABSTRACT This paper describes a study of core drilling into basalt rock in anticipation of a Mars mission. Since the objective is to maintain a sustainable drilling mission on this distant planet, we perform a methodical study to examine parameters which influence sustainability including PCD tool-wear and drilling forces. INTRODUCTION Two gradual modes of insert-wear are experimentally measured: flank wear (VB) and cutting edge radius wear (CERW). Furthermore, relevant equations that relate wear to several factors including rock strength and process parameters are developed. The findings suggest a strong influence of rock hardness, process parameters, and tool geometry on tool-wear. Similar functional dependence is found for the generated thrust force and torque on rock hardness, rake angle, spindle speed, and drill feed. Consequently, equations are derived to model thrust force and torque as functions of these variables
Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for <i>Elovl2</i> in glucose-induced insulin secretion.
In type 2 diabetes (T2D), pancreatic β cells become progressively dysfunctional, leading to a decline in insulin secretion over time. In this study, we aimed to identify key genes involved in pancreatic beta cell dysfunction by analyzing multiple mouse strains in parallel under metabolic stress.
Male mice from six commonly used non-diabetic mouse strains were fed a high fat or regular chow diet for three months. Pancreatic islets were extracted and phenotypic measurements were recorded at 2 days, 10 days, 30 days, and 90 days to assess diabetes progression. RNA-Seq was performed on islet tissue at each time-point and integrated with the phenotypic data in a network-based analysis.
A module of co-expressed genes was selected for further investigation as it showed the strongest correlation to insulin secretion and oral glucose tolerance phenotypes. One of the predicted network hub genes was <i>Elovl2</i> , encoding Elongase of very long chain fatty acids 2. <i>Elovl2</i> silencing decreased glucose-stimulated insulin secretion in mouse and human β cell lines.
Our results suggest a role for <i>Elovl2</i> in ensuring normal insulin secretory responses to glucose. Moreover, the large comprehensive dataset and integrative network-based approach provides a new resource to dissect the molecular etiology of β cell failure under metabolic stress
QacR−Cation Recognition Is Mediated by a Redundancy of Residues Capable of Charge Neutralization
ABSTRACT: The Staphylococcus aureus multidrug binding protein QacR binds to a broad spectrum of structurally dissimilar cationic, lipophilic drugs. Our previous structural analyses suggested that five QacR glutamic acid residues are critical for charge neutralization and specification of certain drugs. For example, E57 and E58 interact with berberine and with one of the positively charged moieties of the bivalent drug dequalinium. Here we report the structural and biochemical effects of substituting E57 and E58 with alanine and glutamine. Unexpectedly, individual substitutions of these residues did not significantly affect QacR drug binding affinity. Structures of QacR(E57Q) and QacR(E58Q) bound to dequalinium indicated that E57 and E58 are redundant for charge neutralization. The most significant finding was that berberine was reoriented in the QacR multidrug binding pocket so that its positive charge was neutralized by side chain oxygen atoms and aromatic residues. Together, these data emphasize the remarkable versatility of the QacR multidrug binding pocket, illustrating that the capacity of QacR to bind myriad cationic drugs is largely governed by the presence in the pocket of a redundancy of polar, charged, and aromatic residues that are capable of electrostatic neutralization. Multidrug resistant bacteria represent a major global health threat that has in great part arisen through the action o
Recommended from our members
A pilot dose-response study of the acute effects of haskap berry extract (Lonicera caerulea L.) on cognition, mood and blood pressure in older adults
Purpose
Haskap (Lonicera caerulea L. or blue honeysuckle) is a plant native to the low-lying wet areas and mountains of Siberia and northeastern Asia, but is now cultivated in Canada. The dark blue berries are rich in anthocyanins, particularly cyanidin-3-O-glucoside. Previously, anthocyanin-rich fruits have been observed to benefit cognitive performance during the immediate postprandial period following a single acute dose. However, no study has currently examined the potential for haskap berries to influence cognitive performance. Here, we investigate the acute cognitive benefits of an anthocyanin-rich haskap berry extract.
Methods
A double-blind, counterbalanced, crossover intervention study compared the acute effects of three separate haskap berry extract doses, containing 100mg, 200mg, and 400mg anthocyanins, with a sugar-matched placebo. Participants were an opportunity sample of 20 older adults, aged 62-81 years. Measures of cognition, mood, and blood pressure were recorded at baseline and 1.5 hours postprandially.
Results
Compared to placebo, the 400mg dose elicited significantly lower diastolic blood pressure and heart rate. Both 200mg and 400mg doses elicited significantly higher word recall, with the 400mg dose also significantly improving word recognition scores, on an episodic memory task. However, mood, working memory and executive function task results were more equivocal.
Conclusions
The findings provide evidence for improvements in episodic memory and blood pressure following acute supplementation with haskap berry extract, with higher doses appearing most effective. The cognitive findings concur with previous literature that suggests episodic memory effects, and not executive function effects, are most prevalent in older adults following anthocyanin-rich berry supplementation. The blood pressure outcome is consistent with a vasodilatory mechanism of action
- …