4,422 research outputs found

    Quantum interference from remotely trapped ions

    Full text link
    We observe quantum interference of photons emitted by two continuously laser-excited single ions, independently trapped in distinct vacuum vessels. High contrast two-photon interference is observed in two experiments with different ion species, calcium and barium. Our experimental findings are quantitatively reproduced by Bloch equation calculations. In particular, we show that the coherence of the individual resonance fluorescence light field is determined from the observed interference

    Shot noise in the chaotic-to-regular crossover regime

    Full text link
    We investigate the shot noise for phase-coherent quantum transport in the chaotic-to-regular crossover regime. Employing the Modular Recursive Green's Function Method for both ballistic and disordered two-dimensional cavities we find the Fano factor and the transmission eigenvalue distribution for regular systems to be surprisingly similar to those for chaotic systems. We argue that in the case of regular dynamics in the cavity, diffraction at the lead openings is the dominant source of shot noise. We also explore the onset of the crossover from quantum to classical transport and develop a quasi-classical transport model for shot noise suppression which agrees with the numerical quantum data.Comment: 4 pages, 3 figures, submitted to Phys.Rev.Let

    Conductance of Open Quantum Billiards and Classical Trajectories

    Full text link
    We analyse the transport phenomena of 2D quantum billiards with convex boundary of different shape. The quantum mechanical analysis is performed by means of the poles of the S-matrix while the classical analysis is based on the motion of a free particle inside the cavity along trajectories with a different number of bounces at the boundary. The value of the conductance depends on the manner the leads are attached to the cavity. The Fourier transform of the transmission amplitudes is compared with the length of the classical paths. There is good agreement between classical and quantum mechanical results when the conductance is achieved mainly by special short-lived states such as whispering gallery modes (WGM) and bouncing ball modes (BBM). In these cases, also the localization of the wave functions agrees with the picture of the classical paths. The S-matrix is calculated classically and compared with the transmission coefficients of the quantum mechanical calculations for five modes in each lead. The number of modes coupled to the special states is effectively reduced.Comment: 19 pages, 6 figures (jpg), 2 table

    Whispering gallery modes in open quantum billiards

    Full text link
    The poles of the S-matrix and the wave functions of open 2D quantum billiards with convex boundary of different shape are calculated by the method of complex scaling. Two leads are attached to the cavities. The conductance of the cavities is calculated at energies with one, two and three open channels in each lead. Bands of overlapping resonance states appear which are localized along the convex boundary of the cavities and contribute coherently to the conductance. These bands correspond to the whispering gallery modes appearing in the classical calculations.Comment: 9 pages, 3 figures in jpg and gif forma

    Nano-wires with surface disorder: Giant localization lengths and dynamical tunneling in the presence of directed chaos

    Full text link
    We investigate electron quantum transport through nano-wires with one-sided surface roughness in the presence of a perpendicular magnetic field. Exponentially diverging localization lengths are found in the quantum-to-classical crossover regime, controlled by tunneling between regular and chaotic regions of the underlying mixed classical phase space. We show that each regular mode possesses a well-defined mode-specific localization length. We present analytic estimates of these mode localization lengths which agree well with the numerical data. The coupling between regular and chaotic regions can be determined by varying the length of the wire leading to intricate structures in the transmission probabilities. We explain these structures quantitatively by dynamical tunneling in the presence of directed chaos.Comment: 15 pages, 12 figure

    Effective Hamiltonian and unitarity of the S matrix

    Full text link
    The properties of open quantum systems are described well by an effective Hamiltonian H{\cal H} that consists of two parts: the Hamiltonian HH of the closed system with discrete eigenstates and the coupling matrix WW between discrete states and continuum. The eigenvalues of H{\cal H} determine the poles of the SS matrix. The coupling matrix elements W~kcc′\tilde W_k^{cc'} between the eigenstates kk of H{\cal H} and the continuum may be very different from the coupling matrix elements Wkcc′W_k^{cc'} between the eigenstates of HH and the continuum. Due to the unitarity of the SS matrix, the \TW_k^{cc'} depend on energy in a non-trivial manner, that conflicts with the assumptions of some approaches to reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for their phases in the neighbourhood of, respectively, avoided level crossings in the complex plane and double poles of the SS matrix are given.Comment: 17 pages, 7 figure

    Dynamics of open quantum systems

    Get PDF
    The coupling between the states of a system and the continuum into which it is embedded, induces correlations that are especially large in the short time scale. These correlations cannot be calculated by using a statistical or perturbational approach. They are, however, involved in an approach describing structure and reaction aspects in a unified manner. Such a model is the SMEC (shell model embedded in the continuum). Some characteristic results obtained from SMEC as well as some aspects of the correlations induced by the coupling to the continuum are discussed.Comment: 16 pages, 5 figure

    When the Earth trembles in the americas: the experience of haiti and chile 2010.

    Get PDF
    The response of the nephrological community to the Haiti and Chile earthquakes which occurred in the first months of 2010 is described. In Haiti, renal support was organized by the Renal Disaster Relief Task Force (RDRTF) of the International Society of Nephrology (ISN) in close collaboration with Médecins Sans Frontières (MSF), and covered both patients with acute kidney injury (AKI) and patients with chronic kidney disease (CKD). The majority of AKI patients (19/27) suffered from crush syndrome and recovered their kidney function. The remaining 8 patients with AKI showed acute-to-chronic renal failure with very low recovery rates. The intervention of the RDRTF-ISN involved 25 volunteers of 9 nationalities, lasted exactly 2 months, and was characterized by major organizational difficulties and problems to create awareness among other rescue teams regarding the availability of dialysis possibilities. Part of the Haitian patients with AKI reached the Dominican Republic (DR) and received their therapy there. The nephrological community in the DR was able to cope with this extra patient load. In both Haiti and the DR, dialysis treatment was able to be prevented in at least 40 patients by screening and adequate fluid administration. Since laboratory facilities were destroyed in Port-au-Prince and were thus lacking during the first weeks of the intervention, the use from the very beginning on of a point-of-care device (i-STAT®) was very efficient for the detection of aberrant kidney function and electrolyte parameters. In Chile, nephrological problems were essentially related to difficulties delivering dialysis treatment to CKD patients, due to the damage to several units. This necessitated the reallocation of patients and the adaptation of their schedules. The problems could be handled by the local nephrologists. These observations illustrate that local and international preparedness might be life-saving if renal problems occur in earthquake circumstances

    Nonlinear acousto-electric transport in a two-dimensional electron system

    Full text link
    We study both theoretically and experimentally the nonlinear interaction between an intense surface acoustic wave and a two-dimensional electron plasma in semiconductor-piezocrystal hybrid structures. The experiments on hybrid systems exhibit strongly nonlinear acousto-electric effects. The plasma turns into moving electron stripes, the acousto-electric current reaches its maximum, and the sound absorption strongly decreases. To describe the nonlinear phenomena, we develop a coupled-amplitude method for a two-dimensional system in the strongly nonlinear regime of interaction. At low electron densities the absorption coefficient decreases with increasing sound intensity, whereas at high electron density the absorption coefficient is not a monotonous function of the sound intensity. High-harmonic generation coefficients as a function of the sound intensity have a nontrivial behavior. Theory and experiment are found to be in a good agreement.Comment: 27 pages, 6 figure

    First-Principles Study for the Anisotropy of Iron-based Superconductors toward Power and Device Applications

    Full text link
    Performing the first-principles calculations, we investigate the anisotropy in the superconducting state of iron-based superconductors to gain an insight into their potential applications. The anisotropy ratio γλ\gamma_\lambda of the c-axis penetration depth to the ab-plane one is relatively small in BaFe2As2 and LiFeAs, i.e., γλ∼3\gamma_\lambda \sim 3, indicating that the transport applications are promising in these superconductors. On the other hand, in those having perovskite type blocking layers such as Sr2ScFePO3 we find a very large value, γλ∼200\gamma_\lambda \sim 200, comparable to that in strongly anisotropic high-Tc cuprate Bi2Sr2CaCu2O{8-\delta}. Thus, the intrinsic Josephson junction stacks are expected to be formed along the c-axis, and novel Josephson effects due to the multi-gap nature are also suggested in these superconductors.Comment: 5 pages, 4 figure
    • …
    corecore