2,812 research outputs found
On-ice measures of external load in relation to match outcome in elite female ice hockey
The aim of this study is to investigate the differences between select on-ice measures using inertial movement sensors based on match outcome, and to determine changes in player movements across three periods of play. Data were collected during one season of competition in elite female ice hockey players (N = 20). Two-factor mixed effects ANOVAs for each skating position were performed to investigate the differences in match outcome, as well as differences in external load measures during the course of a match. For match outcome, there was a small difference for forwards in explosive ratio (p = 0.02, ES = 0.26) and percentage high force strides (p = 0.04, ES = 0.50). When viewed across three periods of a match, moderate differences were found in skating load (p = 0.01, ES = 0.75), explosive efforts (p = 0.04, ES = 0.63), and explosive ratio (p = 0.002, ES = 0.87) for forwards, and in PlayerLoad (p = 0.01, ES = 0.70), explosive efforts (p = 0.04, ES = 0.63), and explosive ratio (p = 0.01, ES = 0.70) for defense. When examining the relevance to match outcome, external load measures associated with intensity appear to be an important factor among forwards. These results may be helpful for coaches and sport scientists when making decisions pertaining to training and competition strategies.York University Librarie
Recommended from our members
Agile manufacturing: General challenges and an IoT@Work perspective
This paper describes the potential impact of the Internet of Things (IoT) technologies and architecture on factory automation. Whereas, IoT use cases range from intelligent infrastructure and smart cities to health care and shopping assistants, it is important to note that factory automation could benefit as well from an IoT approach. In this paper, we argue that there will not be one IoT but many IoTs that could differ in the type of infrastructure they are running or applications they support. In IoT@Work we focus on the potential of making manufacturing environments more agile and flexible. We explain how the IoT-centric architecture for manufacturing also needs a deep understanding of the manufacturing system and its state today. We, therefore, do a reverse engineering based on the requirements and the description of the agility expected in the automation system itself
Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold
A large library of derivatives based on the scaffold of 2-(benzylsulfinyl)benzoic acid were synthesised and tested as atypical inhibitors against four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). The exploration of the chemical space around the main functional groups led to the discovery of selective hCA IX inhibitors in the micromolar/nanomolar range, thus establishing robust structure-activity relationships within this versatile scaffold. HPLC separation of some selected chiral compounds and biological evaluation of the corresponding enantiomers was performed along with molecular modelling studies on the most active derivatives
Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum
We present evidence showing how antiprotonic hydrogen, the quasistable
antiproton-proton (pbar-p) bound system, has been synthesized following the
interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested
Penning trap environment. From a careful analysis of the spatial distributions
of antiproton annihilation events, evidence is presented for antiprotonic
hydrogen production with sub-eV kinetic energies in states around n=70, and
with low angular momenta. The slow antiprotonic hydrogen may be studied using
laser spectroscopic techniques.Comment: 5 pages with 4 figures. Published as Phys. Rev. Letters 97, 153401
(2006), in slightly different for
Three Dimensional Annihilation Imaging of Antiprotons in a Penning Trap
We demonstrate three-dimensional annihilation imaging of antiprotons trapped
in a Penning trap. Exploiting unusual feature of antiparticles, we investigate
a previously unexplored regime in particle transport; the proximity of the trap
wall. Particle loss on the wall, the final step of radial transport, is
observed to be highly non-uniform, both radially and azimuthally. These
observations have considerable implications for the production and detection of
antihydrogen atoms.Comment: Invited Talk at NNP03, Workshop on Non-Neutral Plasmas, 200
Detection of antihydrogen annihilations with a Si-micro-strip and pure CsI detector
In 2002, the ATHENA collaboration reported the creation and detection of cold
(~15 K) antihydrogen atoms [1]. The observation was based on the complete
reconstruction of antihydrogen annihilations, simultaneous and spatially
correlated annihilations of an antiproton and a positron. Annihilation
byproducts are measured with a cylindrically symmetric detector system
consisting of two layers of double sided Si-micro-strip modules that are
surrounded by 16 rows of 12 pure CsI crystals (13 x 17.5 x 17 mm^3). This paper
gives a brief overview of the experiment, the detector system, and event
reconstruction.
Reference 1. M. Amoretti et al., Nature 419, 456 (2002).Comment: 7 pages, 5 figures; Proceedings for the 8th ICATPP Conference on
Astroparticle, Particle, Space Physics, Detectors and Medical Physics
Applications (Como, Italy October 2003) to be published by World Scientific
(style file included
Cold-Antimatter Physics
The CPT theorem and the Weak Equivalence Principle are foundational
principles on which the standard description of the fundamental interactions is
based. The validity of such basic principles should be tested using the largest
possible sample of physical systems. Cold neutral antimatter (low-energy
antihydrogen atoms) could be a tool for testing the CPT symmetry with high
precision and for a direct measurement of the gravitational acceleration of
antimatter. After several years of experimental efforts, the production of
low-energy antihydrogen through the recombination of antiprotons and positrons
is a well-established experimental reality. An overview of the ATHENA
experiment at CERN will be given and the main experimental results on
antihydrogen formation will be reviewed.Comment: Proceedings of the XLIII International Meeting on Nuclear Physics,
Bormio (Italy), March 13-20 (2005). 10 pages, 4 figures, 1 tabl
- …
