3,931 research outputs found

    Effective field theory approach to Casimir interactions on soft matter surfaces

    Full text link
    We utilize an effective field theory approach to calculate Casimir interactions between objects bound to thermally fluctuating fluid surfaces or interfaces. This approach circumvents the complicated constraints imposed by such objects on the functional integration measure by reverting to a point particle representation. To capture the finite size effects, we perturb the Hamiltonian by DH that encapsulates the particles' response to external fields. DH is systematically expanded in a series of terms, each of which scales homogeneously in the two power counting parameters: \lambda \equiv R/r, the ratio of the typical object size (R) to the typical distance between them (r), and delta=kB T/k, where k is the modulus characterizing the surface energy. The coefficients of the terms in DH correspond to generalized polarizabilities and thus the formalism applies to rigid as well as deformable objects. Singularities induced by the point particle description can be dealt with using standard renormalization techniques. We first illustrate and verify our approach by re-deriving known pair forces between circular objects bound to films or membranes. To demonstrate its efficiency and versatility, we then derive a number of new results: The triplet interactions present in these systems, a higher order correction to the film interaction, and general scaling laws for the leading order interaction valid for objects of arbitrary shape and internal flexibility.Comment: 4 pages, 1 figur

    High Energy Field Theory in Truncated AdS Backgrounds

    Full text link
    In this letter we show that, in five-dimensional anti-deSitter space (AdS) truncated by boundary branes, effective field theory techniques are reliable at high energy (much higher than the scale suggested by the Kaluza-Klein mass gap), provided one computes suitable observables. We argue that in the model of Randall and Sundrum for generating the weak scale from the AdS warp factor, the high energy behavior of gauge fields can be calculated in a {\em cutoff independent manner}, provided one restricts Green's functions to external points on the Planck brane. Using the AdS/CFT correspondence, we calculate the one-loop correction to the Planck brane gauge propagator due to charged bulk fields. These effects give rise to non-universal logarithmic energy dependence for a range of scales above the Kaluza-Klein gap.Comment: LaTeX, 7 pages; minor typos fixe

    Gene expression during preimplantation mouse development

    Get PDF
    To develop a resource for the identification and isolation of genes expressed in the early mammalian embryo, large and representative cDNA libraries were constructed from unfertilized eggs, and two-cell, eight-cell, and blastocyst-stage mouse embryos. Using these libraries, we now report the first stages at which the cytokines interleukin (IL)-6, IL-1 beta, and interferon (IFN)-gamma are transcribed in the developing embryo and the presence of IL-7 transcripts in the unfertilized egg. Transcripts for IL-1 alpha, -2, -3, -4, or -5 were not detected at these stages. To identify novel genes expressed on activation of the embryonic genome, the egg and eight-cell stage-specific cDNA libraries were subtracted from the two-cell library, yielding a specialized cDNA library enriched for transcripts expressed at the two-cell stage. Sequence and Southern blot analysis of several of these cDNAs expressed predominantly at the two-cell stage of embryogenesis revealed them to be from novel genes, thereby providing the first molecular tools with which to approach the study of gene expression in the early mammalian embryo

    Next to leading order spin-orbit effects in the motion of inspiralling compact binaries

    Full text link
    Using effective field theory (EFT) techniques we calculate the next-to-leading order (NLO) spin-orbit contributions to the gravitational potential of inspiralling compact binaries. We use the covariant spin supplementarity condition (SSC), and explicitly prove the equivalence with previous results by Faye et al. in arXiv:gr-qc/0605139. We also show that the direct application of the Newton-Wigner SSC at the level of the action leads to the correct dynamics using a canonical (Dirac) algebra. This paper then completes the calculation of the necessary spin dynamics within the EFT formalism that will be used in a separate paper to compute the spin contributions to the energy flux and phase evolution to NLO.Comment: 25 pages, 4 figures, revtex4. v2: minor changes, refs. added. To appear in Class. Quant. Gra

    Validation of an electrogoniometry system as a measure of knee kinematics during activities of daily living

    Get PDF
    Purpose: The increasing use of electrogoniometry (ELG) in clinical research requires the validation of different instrumentation. The purpose of this investigation was to examine the concurrent validity of an ELG system during activities of daily living. Methods: Ten asymptomatic participants gave informed consent to participate. A Biometrics SG150 electrogoniometer was directly compared to a 12 camera three dimensional motion analysis system during walking, stair ascent, stair descent, sit to stand, and stand to sit activities for the measurement of the right knee angle. Analysis of validity was undertaken by linear regression. Standard error of estimate (SEE), standardised SEE (SSEE), and Pearson’s correlation coefficient r were computed for paired trials between systems for each functional activity. Results: The 95% confidence interval of SEE was reasonable between systems across walking (LCI = 2.43 °; UCI = 2.91 °), stair ascent (LCI = 2.09 °; UCI = 2.42 °), stair descent (LCI = 1.79 °; UCI = 2.10 °), sit to stand (LCI = 1.22 °; UCI = 1.41 °), and stand to sit (LCI = 1.17 °; UCI = 1.34 °). Pearson’s correlation coefficient r across walking (LCI = 0.983; UCI = 0.990), stair ascent (LCI = 0.995; UCI = 0.997), stair descent (LCI = 0.995; UCI = 0.997), sit to stand (LCI = 0.998; UCI = 0.999), and stand to sit (LCI = 0.996; UCI = 0.997) was indicative of a strong linear relationship between systems. Conclusion: ELG is a valid method of measuring the knee angle during activities representative of daily living. The range is within that suggested to be acceptable for the clinical evaluation of patients with musculoskeletal conditions

    A nonlinear scalar model of extreme mass ratio inspirals in effective field theory I. Self force through third order

    Full text link
    The motion of a small compact object in a background spacetime is investigated in the context of a model nonlinear scalar field theory. This model is constructed to have a perturbative structure analogous to the General Relativistic description of extreme mass ratio inspirals (EMRIs). We apply the effective field theory approach to this model and calculate the finite part of the self force on the small compact object through third order in the ratio of the size of the compact object to the curvature scale of the background (e.g., black hole) spacetime. We use well-known renormalization methods and demonstrate the consistency of the formalism in rendering the self force finite at higher orders within a point particle prescription for the small compact object. This nonlinear scalar model should be useful for studying various aspects of higher-order self force effects in EMRIs but within a comparatively simpler context than the full gravitational case. These aspects include developing practical schemes for higher order self force numerical computations, quantifying the effects of transient resonances on EMRI waveforms and accurately modeling the small compact object's motion for precise determinations of the parameters of detected EMRI sources.Comment: 30 pages, 8 figure
    • …
    corecore