2,552 research outputs found

    The Federal Trademark Dilution Act of 1995: Potent Weapon or Uphill Battle?

    Get PDF
    Following a brief discussion of the history of trademark infringement law, the events leading to the FTDA, and an overview of the FTDA, this paper discusses the major causes of the FTDA\u27s ineffectiveness. We will then review the application of the act, discuss its implications on the future of trademark ownership in business, and suggest improvements to the legal application of the act

    Depletion potentials in highly size-asymmetric binary hard-sphere mixtures: Comparison of accurate simulation results with theory

    Get PDF
    We report a detailed study, using state-of-the-art simulation and theoretical methods, of the depletion potential between a pair of big hard spheres immersed in a reservoir of much smaller hard spheres, the size disparity being measured by the ratio of diameters q=\sigma_s/\sigma_b. Small particles are treated grand canonically, their influence being parameterized in terms of their packing fraction in the reservoir, \eta_s^r. Two specialized Monte Carlo simulation schemes --the geometrical cluster algorithm, and staged particle insertion-- are deployed to obtain accurate depletion potentials for a number of combinations of q\leq 0.1 and \eta_s^r. After applying corrections for simulation finite-size effects, the depletion potentials are compared with the prediction of new density functional theory (DFT) calculations based on the insertion trick using the Rosenfeld functional and several subsequent modifications. While agreement between the DFT and simulation is generally good, significant discrepancies are evident at the largest reservoir packing fraction accessible to our simulation methods, namely \eta_s^r=0.35. These discrepancies are, however, small compared to those between simulation and the much poorer predictions of the Derjaguin approximation at this \eta_s^r. The recently proposed morphometric approximation performs better than Derjaguin but is somewhat poorer than DFT for the size ratios and small sphere packing fractions that we consider. The effective potentials from simulation, DFT and the morphometric approximation were used to compute the second virial coefficient B_2 as a function of \eta_s^r. Comparison of the results enables an assessment of the extent to which DFT can be expected to correctly predict the propensity towards fluid fluid phase separation in additive binary hard sphere mixtures with q\leq 0.1.Comment: 16 pages, 9 figures, revised treatment of morphometric approximation and reordered some materia

    Two algorithms for the student-project allocation problem

    Get PDF
    We study the Student-Project Allocation problem (SPA), a generalisation of the classical Hospitals / Residents problem (HR). An instance of SPA involves a set of students, projects and lecturers. Each project is offered by a unique lecturer, and both projects and lecturers have capacity constraints. Students have preferences over projects, whilst lecturers have preferences over students. We present two optimal linear-time algorithms for allocating students to projects, subject to the preference and capacity constraints. In particular, each algorithm finds a stable matching of students to projects. Here, the concept of stability generalises the stability definition in the HR context. The stable matching produced by the first algorithm is simultaneously best-possible for all students, whilst the one produced by the second algorithm is simultaneously best-possible for all lecturers. We also prove some structural results concerning the set of stable matchings in a given instance of SPA. The SPA problem model that we consider is very general and has applications to a range of different contexts besides student-project allocation

    Ab initio many-body calculations of nucleon scattering on 4He, 7Li, 7Be, 12C and 16O

    Full text link
    We combine a recently developed ab initio many-body approach capable of describing simultaneously both bound and scattering states, the ab initio NCSM/RGM, with an importance truncation scheme for the cluster eigenstate basis and demostrate its applicability to nuclei with mass numbers as high as 17. Using soft similarity renormalization group evolved chiral nucleon-nucleon interactions, we first calculate nucleon-4He phase shifts, cross sections and analyzing power. Next, we investigate nucleon scattering on 7Li, 7Be, 12C and 16O in coupled-channel NCSM/RGM calculations that include low-lying excited states of these nuclei. We check the convergence of phase shifts with the basis size and study A=8, 13, and 17 bound and unbound states. Our calculations predict low-lying resonances in 8Li and 8B that have not been experimentally clearly identified yet. We are able to reproduce reasonably well the structure of the A=13 low lying states. However, we find that A=17 states cannot be described without an improved treatment of 16O one-particle-one-hole excitations and alpha clustering.Comment: 18 pages, 20 figure

    Spectroscopic Discovery of the Broad-Lined Type Ic Supernova 2010bh Associated with the Low-Redshift GRB 100316D

    Full text link
    We present the spectroscopic discovery of a broad-lined Type Ic supernova (SN 2010bh) associated with the nearby long-duration gamma-ray burst (GRB) 100316D. At z = 0.0593, this is the third-nearest GRB-SN. Nightly optical spectra obtained with the Magellan telescopes during the first week after explosion reveal the gradual emergence of very broad spectral features superposed on a blue continuum. The supernova features are typical of broad-lined SNe Ic and are generally consistent with previous supernovae associated with low-redshift GRBs. However, the inferred velocities of SN 2010bh at 21 days after explosion are a factor of ~2 times larger than those of the prototypical SN 1998bw at similar epochs, with v ~ 26,000 km/s, indicating a larger explosion energy or a different ejecta structure. A near-infrared spectrum taken 13.8 days after explosion shows no strong evidence for He I at 1.083 microns, implying that the progenitor was largely stripped of its helium envelope. The host galaxy is of low luminosity (M_R ~ -18.5 mag) and low metallicity (Z < 0.4 Z_solar), similar to the hosts of other low-redshift GRB-SNe.Comment: 6 pages, 4 figures, 1 table, submitted to ApJ Letter

    Ab Initio Theory of Light-ion Reactions

    Full text link
    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent a theoretical and computational challenge for ab initio approaches. After a brief overview of the field, we present a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method with the ab initio no-core shell model, we complement a microscopic cluster technique with the use of realistic interactions and a microscopic and consistent description of the clusters. We show results for neutron and proton scattering on light nuclei, including p-7Be and n-8He. We also highlight the first results of the d-3He and d-3H fusion calculations obtained within this approach.Comment: To appear in the proceedings of the International Nuclear Physics Conference INPC 2010, Vancouver, Canada, July 4 - 9, 2010, 10 pages, 5 figure

    Use of a ‘molecular tug’ to overcome limitations in the production of ‘difficult to express’ recombinant proteins

    Get PDF
    In recent years there has been an increased drive towards the production of recombinant proteins in large amounts using rapid cell culture processes. Mammalian expression systems such as Chinese Hamster Ovary (CHO) cells have remained the preferred choice for large-scale recombinant protein production (Walsh, 2014). However, in mammalian cells certain recombinant targets can prove to be ‘difficult to express’ and require extensive upstream process optimisation which can have a negative impact on industrial processes. This study has investigated the molecular mechanisms that are responsible for poor recombinant protein production. Model proteins from the Tissue Inhibitors of Metalloproteinase (TIMP) family, TIMP-2, TIMP-3 and TIMP-4, were subject to detailed study to characterise the molecular mechanisms that limit production of recombinant proteins with high sequence homology (Hussain et al., 2017). TIMP-2, -3 and -4, share significant sequence/structural homology (Douglas et al., 1997, Garcia et al., 2012), but show differences when produced in a transient CHO expression system (Hussain et al., 2017) . A systematic screen of the protein expression pathway showed all three TIMPs were detectable at the mRNA and protein level within the cell but only TIMP-2 was secreted in significant amounts into the culture medium. Analysis of the intracellular protein suggested the post-translational processing of poorly expressed TIMPs was limiting. A protein engineering approach was employed to overcome challenges in the production of these ‘difficult to express’ TIMP proteins. This approach involved the attachment of a furin-cleavable pro-sequence from a secretory growth factor to recombinant targets. The pro-sequence was predicted to act as a ‘molecular tug’ to aid transit through the protein expression pathway and/or promote correct post-translational processing. Initially, the furin-cleavable pro-sequence was added to TIMP-3 (non-secreted), which resulted in secretion of TIMP-3, however incomplete processing of the pro-sequence was observed. The protein engineering approach was optimised further and applied in combination with cell engineering (furin overexpression) to TIMP-4 (poorly secreted), which was also successfully detected in significantly higher amounts in the culture medium (Hussain et al., 2017). Together, the described protein engineering approach presents a novel strategy to increase the production of ‘difficult-to-express’ recombinant targets. References: Douglas, D. A., Shi, Y. E. & Sang, Q. X. A. 1997. Computational sequence analysis of the tissue inhibitor of metalloproteinase family. Journal of Protein Chemistry, 16, 237-255. Garcia, M. P. S., Suarez-Penaranda, J. M., Gayoso-Diz, P., Barros-Angueira, F., Gandara-Rey, J. M. & Garcia-Garcia, A. 2012. Tissue inhibitor of metalloproteinases in oral squamous cell carcinomas - A therapeutic target? Cancer Letters, 323, 11-19. Hussain, H., Fisher, D. I., Abbott, W. M., Roth, R. G. & Dickson, A. J. 2017. Use of a protein engineering strategy to overcome limitations in the production of Difficult to Express recombinant proteins. Biotechnology and Bioengineering, 114, 2348-2359. Walsh, G. 2014. Biopharmaceutical benchmarks 2014. Nature Biotechnology, 32, 992-1000

    Familial Childhood Sleep Apnea

    Get PDF
    We report four siblings who had polysomnographically documented sleep apnea. Two presented with the typical clinical picture of sleep apnea syndrome including daytime somnolence and snoring, had repetitive obstructive apneic episodes during sleep, and were effectively treated with upper airway surgery. The other two were asymptomatic and showed infrequent apneic episodes during sleep. This family illustrates the distinction between the sleep apnea syndrome and infrequent apneic episodes during sleep. The sleep apnea syndrome is associated with daytime symptomatology and requires treatment. The presence of apneic episodes during sleep in all four siblings has implications regarding the predisposing factors (eg, upper airway anatomy and central nervous system dysfunction) versus precipitating factors (eg, obesity, upper airway infection, and central nervous system depressants) in sleep apnea
    • 

    corecore