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We report a detailed study, using state-of-the-art simulation and theoretical methods, of the effective (depletion) 
potential between a pair of big hard spheres immersed in a reservoir of much smaller hard spheres, the size 
disparity being measured by the ratio of diameters q ≡ σs/σb. Small particles are treated grand canonically, 
their influence being parameterized in terms of their packing fraction in the reservoir ηs

r . Two Monte Carlo 
simulation schemes—the geometrical cluster algorithm, and staged particle insertion—are deployed to obtain 
accurate depletion potentials for a number of combinations of q � 0.1 and  ηs

r . After applying corrections for 
simulation finite-size effects, the depletion potentials are compared with the prediction of new density functional 
theory (DFT) calculations based on the insertion trick using the Rosenfeld functional and several subsequent 
modifications. While agreement between the DFT and simulation is generally good, significant discrepancies 
are evident at the largest reservoir packing fraction accessible to our simulation methods, namely, ηs

r = 0.35. 
These discrepancies are, however, small compared to those between simulation and the much poorer predictions 
of the Derjaguin approximation at this ηs

r . The recently proposed morphometric approximation performs better 
than Derjaguin but is somewhat poorer than DFT for the size ratios and small-sphere packing fractions that 
we consider. The effective potentials from simulation, DFT, and the morphometric approximation were used to 
compute the second virial coefficient B2 as a function of ηs

r . Comparison of the results enables an assessment of 
the extent to which DFT can be expected to correctly predict the propensity toward fluid-fluid phase separation in 
additive binary hard-sphere mixtures with q � 0.1. In all, the new simulation results provide a fully quantitative 
benchmark for assessing the relative accuracy of theoretical approaches for calculating depletion potentials in 
highly size-asymmetric mixtures. 

DOI: 10.1103/PhysRevE.84.061136 PACS number(s): 64.60.De, 64.75.Xc, 64.75.Cd, 05.10.Ln 

I. INTRODUCTION	 biggest particles in a sea of the smaller species. There is a long 
history of work in this field. Various statistical mechanical 

Much of condensed matter physics and chemistry is techniques have been developed to calculate these potentials 
concerned with simplifying the description of a complex for different types of complex fluid. Well-known examples of 
many-body system by integrating out certain subsets of the effective two-body potentials, forming cornerstones of colloid 
degrees of freedom of the full system. Thus in treating science, are the Derjaguin-Landau-Verwey-Overbeek (DLVO) 
atomic and molecular solids and liquids one often resorts potential for charged colloids and the Asakura-Oosawa deple
to integrating out, usually approximately, the higher energy tion potential for colloid-polymer mixtures. Further examples, 
quantum mechanical degrees of freedom of the electrons in including polymer systems, are given in Refs. [1,3].

order to obtain an effective interatomic or intermolecular

potential energy function that is then employed in a classical 

The problem of determining the effective two-body in-


statistical mechanical treatment to study the properties of	
teraction is particularly challenging to theory and computer


condensed phases. Similarly in metallic systems integrating 
simulation in the situation where—and we specialize to


out the degrees of freedom of the conduction electrons leads 
a binary fluid—the bigger particles are much larger than


to an effective Hamiltonian for the screened ions or pseudo-
the smaller ones. Sophisticated theoretical and simulation


atoms. When one turns to complex, multicomponent fluids	 techniques, which will provide accurate results for the effective


such as colloidal suspensions or polymers in solution the basic potential, are only now becoming available.


idea is similar: One integrates out the degrees of freedom of Our present focus is on a simple model for a suspension of a


the small species to obtain an effective Hamiltonian for the	 binary mixture of big and small colloidal particles, both species


biggest species; for an illuminating review see Ref. [1]. In this suitably sterically stabilized; i.e., we consider a highly size


case all species can be treated classically, and the formalism asymmetric binary mixture of hard spheres. This can also serve


is essentially the famous one of McMillan and Mayer [2],	 as a crude model of a mixture of colloids and nonadsorbing 
polymer and can be regarded as a reference system for a who developed a general theory for the equilibrium properties 
mixture of size asymmetric simple fluids.1 The hard-sphere of solutions. These authors and many others subsequently 

recognized that integrating out is best performed when the 
smaller species (those constituting the solvent) are treated 
grand canonically. Obtaining the full effective Hamiltonian 1It is not universally accepted that a binary mixture of hard 
is a tall order. A first step in any theoretical treatment is to spheres is a good reference system for binary mixtures of colloids 
determine the effective potential between a single pair of the in suspensions. Residual (non-hard-sphere) interactions might play 
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mixture is important in that it provides a testing ground for 
theories of the effective potential between two big hard spheres 
immersed in reservoirs of small ones, with different packing 
fractions ηr , and, indeed, for theories of the full effective s 

Hamiltonian obtained when the degrees of freedom of the 
small species are integrated out fully [4]. Generally speaking, 
the more asymmetric the mixture the more difficult it is to 
treat both species on equal footing and the more necessary it 
is to perform some integrating out to obtain an (approximate) 
effective Hamiltonian. Often this procedure is feasible only at 
the level of a Hamiltonian consisting of a sum of (effective) 
pair potentials, as obtained by considering a single pair of the 
big particles, along with zero- and one-body terms [1,4]. One 
of the advantages of the hard-sphere system is that geometrical 
considerations indicate that three-, four-, etc., body terms 
become less important as the size ratio q = σs/σb becomes 
small. Here σs and σb denote the diameters of the small and 
big species, respectively. Thus provided one can calculate an 
accurate effective pair potential, the pair description alone 
determines an effective Hamiltonian that should provide an 
excellent description of the big-big correlation functions and 
the phase behavior of the binary hard-sphere mixture when q 

is sufficiently small [4]. Note that in this paper we consider 
additive hard-sphere mixtures so that the big-small diameter 
σbs = (σb + σs)/2. 

Since the studies of the phase behavior of the hard-sphere 
mixture by Dijkstra et al. [4], whose simulations of an effective 
one-component system used a rather crude approximate pair 
potential, there have been several new developments in the 
theory of effective potentials. Most of these are based on 
Density Functional Theory (DFT). It is important to assess 
whether (1) the potentials derived in recent studies are accurate 
and (2) use of these might lead to different predictions for the 
properties of the mixture. In order to make such assessments 
it is necessary to have accurate simulation results for the 
effective potential. Employing state-of-the art techniques we 
provide what we believe are the most accurate results currently 
available for q � 0.1 and packing fractions ηs

r up to 0.35 
and make direct comparisons with the results of theoretical 
approaches. The simulation techniques we employ do not 
allow us to work at very high values of ηs

r , but they do allow 
us to compute accurate effective potentials, for a range of 
size ratios, in the regime of small sphere packing fractions 
where the putative (metastable) fluid-fluid phase separation 
is predicted to occur [4]. By calculating the second virial 
coefficient associated with the effective potential we make 
new estimates of the value of ηr where the onset of this elusive s 

phase transition occurs. Of course, real colloidal systems may 
not reach equilibrium on experimental time scales, particularly 
if the effective potential exhibits significant repulsive barriers 
[5]. Nevertheless, knowledge of the underlying phase behavior 
is important for interpreting dynamical observations, such as 
whether gelation or glassiness might set in Refs. [6,7]. 

The comparison between DFT results and simulation 
addresses recent suggestions [8,9] that no existing theoretical 
framework is reliable for calculating effective potentials for 

a role in determining the effective big-big potential and the phase 
behavior. See, e.g., Ref. [62] and references therein. 
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small values of q and physically relevant values of ηs
r . We  

examine and refute these suggestions in the light of our present 
results. 

The effective potential between two big hard spheres takes 
the form 

φeff (rbb) = φbb(rbb) + W (rbb), (1) 

where φbb is the bare hard-sphere potential between two big 
spheres and W is the so-called depletion potential. This is 
attractive for small separations rbb of the big spheres but 
decays in an exponentially damped oscillatory fashion at large 
separations. The physics of the attraction is well understood: 
The exclusion or depletion of the small spheres as the big 
ones come close together results in an increase in free volume 
available to the small species leading to an increase of entropy. 
If this attraction is sufficiently strong it can give rise to 
fluid-fluid phase separation. Such a phase transition is driven 
by purely entropic effects: Recall that all the bare interactions 
in the mixture are those of hard spheres. Of course, the concept 
of an attractive depletion potential between colloids dispersed 
in a solution of nonadsorbing polymer or other depletants 
has a long history. The recent book by Lekkerkerker and 
Tuinier [10] describes this and the general importance of 
depletion interactions in colloidal systems. 

We have emphasized that the effective pair potential is a 
key ingredient in an effective Hamiltonian description of the 
mixture. However, this object is also important in its own right 
since it can be measured experimentally for colloidal systems 
using various techniques. More specifically, the effective 
potential between a single colloid, immersed in a suspension 
of small colloidal particles or nonadsorbing polymer, and a flat 
substrate has been measured; see, for example, Ref. [11] and 
the comparisons made between DFT results and experiment 
[12]. Crocker et al. [13] measured the effective potential 
between two big PMMA particles immersed in a sea of small 
polystyrene spheres and observed damped oscillations at high 
small-sphere packing fractions. Subsequently comparisons 
were made with DFT results [14]. Reference [15] provides a 
recent review of direct experimental measurements of effective 
interactions in colloid-polymer systems. 

A. Previous simulation studies 

In general, the task of accurately measuring effective 
potentials in highly size-asymmetrical fluid mixtures using 
traditional simulation methods such as molecular dynamics 
(MD) or Monte Carlo (MC) is an extremely challenging 
one. The difficulty stems from the slow relaxation of the big 
particles caused by the presence of the small ones. Specifically, 
in order for a big particle to relax, it must move a distance of 
order its own diameter σb. However, for small size ratios q, 
and even at quite low values of ηs

r , very many small particles 
are typically to be found surrounding a big particle, and these 
hem it in, greatly hindering its movement. In computational 
terms this mandates a very small MD time step in order 
to control integration errors, while in MC simulations that 
employ local particle displacments, a very small trial step size 
must be used in order to maintain a reasonable acceptance 
rate. Consequently, the computational investment required to 
simulate highly size-asymmetric mixtures by traditional means 
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is (generally speaking) prohibitive at all but the lowest packing 
fractions of small particles. 

Owing to these difficulties, most previous simulation 
studies of hard-sphere mixtures [8,9,16–18] have adopted an 
indirect route to measuring effective potentials in the highly 
size-asymmetrical regime q � 0.1 based on measurements of 
interparticle force. The strategy rests on the observation that 
the force between two big particles can be expressed in terms 
of the contact density of small particles at the surface of the 
big ones [17,19]. By measuring this (angularly dependent) 
contact density for fixed separation rbb of the big particles 
and repeating for separations ranging from the minimum value 
rbb = σb to rbb = ∞, one obtains the force profile F (rbb). This 
can in turn be integrated to yield an estimate of the depletion 
potential. Generally speaking, however, the statistical quality 
of the data obtained via this route seems typically quite low, 
particularly at small q and high ηs

r . This presumably reflects 
the difficulties of measuring contact densities accurately and 
the errors inherent in numerical integration. 

Only a few studies have tried to measure the depletion 
potential directly for q � 0.1 (see Refs. [20,21] for hard-
sphere studies and Refs. [22,23] for more general potentials). 
In common with the present work, these studies deployed 
a cluster algorithm (to be described in Sec. II A) to deal 
efficiently with the problem of slow relaxation outlined above. 
However, they treated the small particles canonically rather 
than grand canonically, which complicates comparison with 
theoretical predictions, which are typically formulated in terms 
of an infinite reservoir of small particles.2 Furthermore it 
seems that no previous simulation studies have discussed (in 
any detail) finite-size effects in measurements of depletion 
potentials, the role of which we believe to be particularly 
significant at large size asymmetries. Consequently, while 
previous work has evidenced good qualitative agreement 
between simulation and theory, there is to date a lack of data 
from which one can make confident comparisons between the 
various theoretical approaches. This is remedied in the present 
work. 

B. Previous theoretical studies 

There are many of these, and they are based on a variety of 
techniques. Integral equation treatments abound, and some 
of these are summarized in the recent article by Boţan 
et al. [24]. The studies of Amokrane and co-workers that 
implement sophisticated closure approximations within a 
bridge functional approach probably constitute the state of the 
art in integral equation treatments of asymmetric mixtures; see, 
e.g., Refs. [25,26]. A related rational function approach was 
used recently by Yuste et al. [27]. Tackling highly asymmetric 
mixtures via integral equation methods, where one treats 
both species on equal footing, is notoriously difficult, and 
making systematic assessments of the reliability of closure 
approximations is not straightforward and, of course, requires 
accurate simulation data. 

Density functional (DFT) treatments are arguably much 
more powerful. There are several different ways of calculating 

2However, see Ref. [18] for a grand canonical study at q = 0.2. 
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the effective (depletion) potential between two big hard 
spheres in a reservoir of small hard spheres or more generally 
of calculating the effective potential between two big particles 
in a reservoir of small ones with arbitrary interactions between 
bb, bs, and ss. The first method is to fix the centers of the big 
(b) particles a distance rbb apart and then compute the grand 
potential of the small (s) particles in the external field of the 
two fixed b particles as a function of rbb for a given size ratio 
q and a reservoir packing fraction of ηs

r . This method requires 
only a DFT for a single-component fluid, the small particles. 
The big particles are fixed so they simply exert an external 
potential on the small ones. DFT for one-component hard 
spheres is very well developed; very accurate functionals exist, 
and these are suitable for treating the extreme inhomogeneities 
that arise for small size ratios q. It follows that this brute force 
method should be rather accurate. Its drawback is that the 
density profile of the small particles has cylindrical symmetry 
requiring numerically accurate minimization of the free energy 
functional on a two-dimensional grid. 

Goulding [30,31] performed pioneering brute force calcula
tions using the Rosenfeld fundamental measure theory (FMT) 
[30] for a system with q = 0.2 and packing fractions ηs

r up to 
0.314. This method has been refined recently by Boţan et al. 
[24] who employed various hard-sphere functionals for more 
asymmetric systems and higher values of ηs

r . These authors 
(see also Oettel et al. [31]) also used DFT to calculate the 
depletion force directly using the formula due to Attard [17,19] 
that relates the force to the density profile of small spheres 
in contact with a big sphere. Once again the density profile 
has cylindrical symmetry, and careful numerical methods are 
required. 

A popular DFT method for hard-sphere systems is based 
on what has become known as the insertion trick or insertion 
method [14,18]. This is a general procedure (see Sec. III A) for  
calculating the depletion potential between a big particle and 
a fixed object, e.g., a wall or another big particle, immersed in 
a sea of small particles. The advantage of the method is that 
one requires only the equilibrium density profile of the small 
species in the external field of the isolated fixed object, and this 
profile clearly has the symmetry of the single fixed object. For 
the case of two big spheres the profile ρs(r) has spherical 
symmetry. The disadvantage is that the theory requires a 
DFT for an asymmetric mixture, albeit in the limit where the 
density ρb of the big particles approaches zero: ρb → 0. For 
hard-sphere mixtures the insertion method is straightforward 
to implement, and Ref. [14] provides a series of comparisons, 
using the Rosenfeld FMT [30], with the simulation data that 
existed in 2000. 

Further comparisons between results of the DFT insertion 
method and simulation studies were made in Refs. [8,9,24, 
31]. In the present paper we seek to make more quantitative 
comparisons, taking into consideration the improved accuracy 
of our new simulation results and the availability of improved 
DFTs for hard-sphere fluids. 

There is a further theoretical approach to calculating 
depletion potentials developed very recently in Ref. [31] and 
employed subsequently in Ref. [24]. This approach is based 
on morphological (or morphometric) thermodynamics [32]. 
The basic idea is that the depletion potential is (essentially) 
the solvation free energy of the dumbbell formed by the 

061136-3 



ASHTON, WILDING, ROTH, AND EVANS 

two big spheres and that this quantity can be separated into 
geometrical measures, namely, the volume, surface area, and 
integrated mean and Gaussian curvatures. The coefficients 
of these measures are geometry-independent thermodynamic 
quantities, i.e., the pressure, the planar surface tension, and 
two bending rigidities, all of which can be obtained from 
simulations or from DFT calculations of the single-component 
fluid performed for a simple geometry. 

The paper is arranged as follows: Sec. II describes the 
grand canonical simulation methods that we have employed for 
determining the depletion potential between two big spheres 
for size ratios q from 0.1 to 0.01. In Sec. III we summarize 
briefly the DFT insertion method and the three hard-sphere 
functionals that we employ in our present calculations. We 
also discuss some of the limitations of the parametrization 
of the depletion potential introduced in Ref. [14]. Some 
details of the morphometric approaches are also given here. 
Results are presented in Sec. IV. As a test of our simulation 
method we determine the depletion potential for two big hard 
spheres in a solvent of noninteracting point particles that have 
a hard interaction with the big spheres. For this case the 
depletion potential is known analytically; it is the venerable 
Asakura-Oosawa potential [33,34] of colloid science. For 
the additive binary hard-sphere case we make comparisons 
between results of simulation, DFT insertion method, the 
morphometric approach, and the Derjaguin approximation 
[35] for the depletion potential. We also compare simulation, 
DFT, and morphometric results for the associated second virial 
coefficient B2(ηs

r ). The latter provides a valuable indicator of 
the propensity of the bulk binary mixture to phase separate 
into two fluid phases [36,37]. We conclude in Sec. V with a 
discussion. 

II. SIMULATION METHODS 

A. Geometrical cluster algorithm 

An efficient cluster algorithm capable of dealing with 
hard spheres mixtures was introduced by Dress and Krauth 
in 1995 [38]. It was subsequently generalized to arbitrary 
interaction potentials by Liu and Luijten [22,39], who dubbed 
their method the Geometrical Cluster Algorithm (GCA). Here 
we describe the application of the GCA to a size asymmetrical 
binary mixture of hard spheres. 

The particles comprising the system are assumed to be 
contained in a periodically replicated cubic simulation box 
of volume V . The configuration space of these particles is 
explored via cluster updates, in which a subset of the particles 
known as the “cluster” is displaced via a point reflection 
operation in a randomly chosen pivot point. The cluster 
generally comprises both big and small particles, and by 
virtue of the symmetry of the point reflection, members of the 
cluster retain their relative positions under the cluster move. 
Importantly, cluster moves are rejection-free even for arbitrary 
interparticle interactions [22]. This is because the manner in 
which a cluster is built ensures that the new configuration is 
automatically Boltzmann distributed. 

For hard spheres, the cluster is constructed as follows: One 
of the particles is chosen at random to be the seed particle of 
the cluster. This particle is point-reflected with respect to the 
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pivot from its original position to a new position. However, 
in its new position, the seed particle may overlap with other 
particles. The identities of all such overlapping particles are 
recorded in a list or “stack.” One then takes the topmost particle 
off the stack and reflects its position with respect to the pivot. 
Any particles that overlap with this particle at its destination 
site are then added to the bottom of the stack. This process is 
repeated iteratively until the stack is empty and there are no 
more overlaps. 

In this work we shall be concerned with measurements of 
the radial distribution function gbb(r) for a system containing 
a pair of big particles among many small ones. To effect 
this measurement we modify the GCA slightly as follows: 
We choose one big particle to be the seed particle, which 
we place uniformly at random within a shell σbb < r  < L/2, 
centered on the second big particle, with L the linear box 
dimension. The location of the pivot is then inferred from the 
old and new positions of the seed particle. Thereafter clusters 
are built in the standard way. This strategy satisfies detailed 
balance and improves efficiency by ensuring that we generate 
only separations of the big particles that lie in the range 
r = [σbb,L/2] for which gbb(r) is defined for hard spheres in 
a cubic box. The correctness of this technique was checked by 
comparing with the standard GCA approach described above. 

Small particles are treated grand canonically in our sim
ulations. In practical terms this means that in parallel with 
the cluster moves, we implement insertions and deletions of 
small particles, subject to a Metropolis acceptance criterion 
governed by an imposed chemical potential. The choice of 
chemical potential controls the reservoir packing fraction of 
small particles. 

For the systems of interest in this work, we find that the 
GCA is efficient for reservoir packing fractions ηs

r � 0.2. 
Above this value one finds that practically all the particles join 
the cluster, which merely results in a trivial point reflection of 
the entire system. For single-component fluids this problem 
can be ameliorated by biasing the choice of pivot position to 
be close to the position of the seed particle [22]. Doing so 
has been reported to extend the operating limit to ηs

r � 0.34. 
However, for the case of highly asymmetrical mixtures we find 
that this strategy does not significantly decrease the number of 
particles in the cluster because as soon as a second big particle 
joins the cluster and is point reflected it causes many overlaps 
with small particles. 

B. Staged insertion algorithm 

Our second MC approach for obtaining effective potentials 
for size asymmetrical mixtures is based on the staged insertion 
of a big particle [40–43]. The method involves first fixing one 
big particle at the origin and then sampling the free-energy 
change associated with inserting a second big particle at 
a prescribed distance rbb from the origin. Essentially this 
amounts to an estimation of the chemical potential of the 
second particle μex(rbb). As such our approach is close in spirit 
to one proposed very recently by Mladek and Frenkel [44], 
although their implementation did not employ staged insertion 
and was therefore restricted to low-density systems or those 
interacting via very soft potentials. 
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The effective potential for big particle separation rbb is 
simply 

W (rbb) = μex(rbb) + C, (2) 

where the additive constant 

C = −  lim 
rbb→∞ μex(rbb)  (3)  

can be determined as the excess chemical potential of a single 
big particle in the reservoir of small particles. To estimate 
μex(rbb) we follow the strategy described in Ref. [42]. In 
outline, one imagines that the second big particle can exist 
in one of M possible “ghost” states in which it interacts with 
a small hard particle (a distance rbs away) via the potential 

βφg 
(m)(rbs) = −[1 − �(rbs − σb)] ln λ(m) . 

Here m = 1, . . . ,M  (an integer) indexes the ghost states, while 
the associated coupling parameter 0 � λ(m) � 1 controls the 
strength of the repulsion between the big particle and the 
small one. Owing to the step function �, the potential is 
uniformly repulsive over the volume of the big particle, and 
zero elsewhere. Moreover, for λ(m) > 0 the repulsion is finite 
so that overlaps between small particles and the big one can 
occur. If we denote by No the number of such overlaps at any 
given time, then the configurational energy associated with the 
ghost big particle is 

β�(
g
m) = −No ln λ(m) . (4) 

Clearly for λ(m) = 0, the big particle acts like a normal 
hard sphere, while for λ(m) = 1 there is no interaction and 
the big particle is effectively absent from the system. To span 
this range we set the extremal states λ(1) = 0 and λ(M) = 1 
and define some number of intermediate states that facilitate 
efficient MC sampling over the range m = 1, . . . ,M , i.e., that 
permits the ghost particle to fluctuate between being a real hard 
sphere and being absent. The measured value of the relative 
probability of finding the system in these extremal states yields 
the excess chemical potential: 

p(λ(M))
μex(rbb) = ln 

p(λ(1)) 
. (5) 

Now since W (rbb) is spherically symmetric, it can be 
estimated from Eqs. (5) and (2), by measuring μex(rbb) for  
values of rbb � σb along a one-dimensional grid. Moreover 
since each such measurement is independent of the others, the 
approach is trivially parallel and thus can be effectively farmed 
out on multicore processors. 

Details of a suitable Metropolis scheme for sampling 
the full range of m = 1, . . . ,M  have been described in 
detail previously [42,43]. The basic idea is to perform grand 
canonical simulation of the small particles, supplemented by 
MC updates that allow transitions m → m ± 1 for the ghost big 
particle. These transitions are accepted or rejected on the basis 
of the change in the configurational energy Eq. (4). However, 
for this strategy to realize the aim of sampling the relative 
probability of the extremal states, it is necessary to bias the 
transitions such as to ensure approximately uniform sampling 
of the M ghost states. This is achieved by determining a 
suitable set of weights that appear in the MC acceptance 
probability [45]. 

Additionally it is important to choose sufficient interme
diate states and to place them at appropriate values of λ 

such that transitions m → m ± 1 are approximately equally 
likely in both directions and have a reasonably high rate of 
acceptance. To achieve this we perform a preliminary run in 
which we consider a single big ghost particle in the reservoir 
of small ones. We first define M = 1000 values of λ in the 
range (0,1), evenly spaced in ln λ and (in short runs) measure 
the distribution of overlaps p(No|λ) for each. From this set we 
then pick out those values of λ for which successive p(No|λ) 
exhibit an overlap by area of approximately 20%. This criterion 
yields a suitable set of intermediate states. 

Efficiency benefits result from noting that the rate of 
transitions in m depends on how quickly the number of over
laps No relaxes after each successive transition. To enhance 
this relaxation we preferentially perform grand canonical 
insertions and deletions of small particles within a spherical 
subvolume of diameter 1.2σb centered on the second big 
particle. Updates within the subvolume occur with a frequency 
100-fold that outside the subvolume. Our approach—which 
satisfies detailed balance—greatly reduces the time spent 
updating small particles whose coordinates are relatively 
unimportant for the quantity we wish to estimate. 

The validity of the staged insertion technique was pre
viously verified via comparisons with GCA in the context 
of grand canonical ensemble studies of phase behavior in 
highly size-asymmetrical binary mixtures of Lennard-Jones 
particles [43]. In the present context of hard-sphere depletion 
potentials, we have explicitly verified for q = 0.1,ηs

r = 0.2 
that the staged insertion technique yields results that agree to 
within statistical errors with those determined using the GCA 
technique. 

A further innovation, applicable to highly size-
asymmetrical hard sphere mixtures, stems from the observa
tion that it is not actually necessary to insert a big hard sphere in 
order to calculate the effective potential. Instead it is sufficient 
and (generally much more efficient) to insert a hard shell of in
finitesimal thickness. The basic idea is that when fully inserted 
a hard shell particle encloses a number of small particles. These 
remain in equilibrium with the reservoir (i.e., their number 
can still fluctuate) but are fully screened from the rest of the 
system because their surfaces cannot penetrate the shell wall. 
Accordingly their contribution to the free energy is indepen
dent of the position of the shell particle, and hence their net 
effect is merely to shift the value of the additive constant in the 
measurement of μex(rbb). Since the latter is anyway set by hand 
to ensure that limrbb→∞ W (rbb) = 0, one does not need to know 
the contribution to the free energy from the enclosed particles. 

From a computational standpoint, the task of inserting a 
hard shell is much less challenging than that of inserting a 
hard sphere: Essentially the chemical potential grows with 
the particle size ratio like (1/q)2 rather than (1/q)3. Conse
quently, far fewer intermediate stages M are required to effect 
the insertion, which reduces substantially the computational 
expenditure in measuring μex(r) accurately. We have explicitly 
verified that the shell insertion approach yields results for the 
effective potential that agree to within statistical error with 
those resulting from sphere insertion. 

While the staged insertion technique is not as straight
forward to implement as the GCA for highly asymmetrical 
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mixtures, it does not suffer the very rapid decrease in 
efficiency that renders the GCA inoperative for ηs

r � 0.2. 
The computational expenditure required to obtain effective 
potentials via staged insertion does increase with ηs

r , but  more  
gradually than for the GCA. Thus we were able to attain (for 
q = 0.1), the considerably larger reservoir packing fraction of 
ηr = 0.35. This was achieved for a computational expenditure s 

of circa 2 weeks on a 150-core computing cluster, the bulk of 
which is associated with decorrelating the configurations of 
the small particles at this volume fraction. At the somewhat 
lower volume fraction of ηs = 0.32, only 2 days were required 
on the same machine. These figures sugest that while it may 
be feasible to go to somewhat higher volume fractions than 
ηs = 0.35, the computational cost would be high. 

C. Correcting for finite-size effects 

The effective potential W (r) between two big particles is 
defined in terms of the radial distribution function g(r) ≡ 
gbb(r), with r = rbb, measured in the limit of infinite dilution 

−βW (r) = lim ln[g(r)] , (6) 
ρb→0 

for r > σb. In our simulation studies this limit is approximated 
by placing a single pair of big hard spheres in the simulation 
box. A finite-size estimate to g(r), which we shall denote gL(r), 
is then obtained by fixing the first of these particles at the origin 
and measuring (in the form of a histogram) the probability of 
finding the second big particle in a shell of radius r → r + dr , 
i.e., 

P (r) 
gL(r) = , (7)

Pig(r) 

where the normalization relates to the probability of finding 
an ideal gas particle at this radius: 

4πr2 

Pig(r) = .	 (8)
V 

Now, the principal source of finite-size error in gL(r) 
arises from the normalization of Pig by the system volume. 
Specifically, for a finite-sized system, the volume occupied 
by the hard sphere at the origin is inaccessible to the second 
particle. Accordingly, the accessible system volume is 

Ṽ = V − v1,	 (9) 

where v1 = (1/6)πσb 
3 is the hard-sphere volume. More gen

erally, one should define an effective excluded volume ṽ1 for 
use in Eq. (9), which allows for the fact that the small particles 
can mediate additional repulsions and/or attraction between 
the two big particles. In principle ṽ1 is given by � ∞ 

ṽ1 = 4π [1 − g(r)]r 2 dr. (10) 
0 

It follows from Eqs. (7)–(10) that the principal finite-size 
contribution to gL(r) is just an overall scale factor: 

Ṽ
g(r) = gL(r) .	 (11)

V 

Accordingly gL(r) approaches V/Ṽ at large r instead of 
unity, while the calculated effective potential, W (r) decays 
to ln( Ṽ /V ) instead of zero. 

g L
(r

),
 G

(R
) 

1 

0.8 

0.6 

0.4 

0.2 

0 

g
L
(r) 

G(R) 

Gradient 0.4100(5) 

1	 1.05 1.1 1.15 1.2 1.25 

r/σ
b
, R/σ

b 

FIG. 1. (Color online) The measured form of gL(r) for  q = 0.05, 
ηr = 0.2 obtained for a system size L = 2.5σb. Also shown is the s 

cumulative integral G(R) = 0 
R 

gL(r) dr , together with an asymptotic 
linear fit, the gradient of which yields the finite-size correction factor 
for g(r). 

One can conceive of a number of possible approaches for 
dealing with this finite-size error. One is simply to minimize 
it by choosing a very large system volume V so that V/Ṽ

is close to unity. The disadvantage of this approach is that 
in a size-asymmetrical mixture, in which the big particles 
are in equilibrium with a reservoir of small ones, a huge 
number of small particles will necessarily fill the extra space 
available in a bigger box. All the interactions arising from 
these small particles then need to be computed, which can 
become prohibitively expensive. 

Another route, which we have adopted in the present work, 
is to attempt to correct gL(r) by estimating the overall scale 
factor in Eq. (11), thus ensuring that g(r) → 1 at large r . An  
expedient approach to doing so, which utilizes as much as 
possible of the information in gL(r), proceeds by determining 
the cumulative integral of gL(r): 

� R 

G(R) = gL(r) dr. (12) 
0 

In practice, this integral was observed to tend toward a 
smooth linear form quite rapidly as the upper limit R increases, 
a fact illustrated for typical data in Fig. 1. A little thought then 
shows that if when left uncorrected g(r) tends to V/Ṽ at large 
r , the limiting gradient m of G(R) is  m = V/Ṽ , which thus 
provides the requisite correction factor for use in Eq. (11). 
Thus one corrects the measured histogram gL(r) by first fitting 
G(R) to obtain an estimate of the limiting gradient of the linear 
part, and then scaling gL(r) according to g(r) = m −1 gL(r). 

III. THEORETICAL METHODS 

As mentioned in the Introduction we choose to make 
comparisons between our simulation results and those from 
the DFT insertion method and from the morphometric and 
Derjaguin approximations. 
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A. DFT 

The DFT insertion method is described in detail in Roth 
et al. [14]. It is based on an exact result from the potential 
distribution theorem, for an arbitrary mixture, that expresses 
the effective potential between two big particles in terms of 
the one-body direct correlation function of the big species 
in the limit where the density ρb of that species vanishes. 
For DFT treatments of hard-sphere mixtures that employ the 
fundamental measures theory (FMT) approach [30] the calcu
lation of the effective potential requires the computation of the 
density profile ρs(r) of the small spheres in the neighbourhood 
of a single fixed big sphere as well as knowledge of the 
weight functions and the excess free energy density of the 
(binary) mixture [14]. The FMT must be sufficiently accurate 
to describe a very asymmetric binary mixture, i.e., one with 
small values of q, in the limit ρb → 0. In the original DFT 
studies [14,18] the Rosenfeld (RF) FMT [30] was employed. 
In the present work we employ RF, the White Bear (WB) 
version [46], and its modification the White Bear Mark 2 
(WB2) version [47]. These versions differ from RF in the 
choice of the coefficients φα entering the excess free-energy 
function. RF yields thermodynamic quantities that are the same 
as those from Percus-Yevick (compressibility) approximation, 
whereas WB incorporates the accurate Mansoori-Carnahan-
Starling-Leland (MCSL) empirical bulk equation of state. In 
WB2 additional self-consistency requirements are imposed 
on the pressure. The consistency of the WB2 version was 
demonstrated in calculations of the surface tension and other 
interfacial thermodynamic coefficients for a one-component 
hard-sphere fluid adsorbed at a hard spherical surface [47]. 
Reference [48] provides an overview of recent develop
ments and describes comparisons between different versions 
of FMT. 

Boţan et al. [24] carried out DFT insertion method calcula
tions as well as explicit (brute force) free-energy minimization 
for two fixed big spheres using different versions of FMT. 
These authors provide a compendium of the ingredients 
entering the FMT functionals as well as the thermodynamic 
coefficients required in the morphometric approximation, and 
we refer readers to Appendix B of Ref. [24] for the explicit 
formulas used in the present calculations. Their paper is 
important in pointing to the regimes where the DFT insertion 
method is likely to fail. In particular, for ηs

r = 0.419 and 
q = 0.1 and 0.2 there are substantial differences between the 
results for the depletion potential calculated by brute force 
and from the insertion method. At higher reservoir packing 
fractions the differences can be even larger. Moreover different 
FMTs can give rise to quite different potentials at high small 
sphere packings. The comparisons made by Oettel et al. [31] 
for the depletion force using the RF functional suggest that 
for q = 0.05 the insertion method is not especially accurate at 
ηs

r = 0.314 and 0.367. Of course, one is assuming that the brute 
force minimization is the more accurate method as this requires 
only a reliable functional for a single-component hard-sphere 
fluid, not one for the asymmetric mixture. 

However, our present study focuses on smaller values of 
ηr than those considered in Ref. [24]. Previous studies [14,s 

18] showed generally good agreement between DFT insertion 
results and those of simulation for q = 0.1 and 0.2 and ηs

r 

typically up to 0.3. Since we are concerned primarily with 

investigating the depletion potential for highly asymmetrical 
mixtures in regimes, accessible to simulation, near the onset 
of fluid-fluid phase separation, we do not concern ourselves 
with very high values of ηs

r where the DFT insertion method 
is likely to be inaccurate. 

Another way of viewing this DFT insertion method is 
that it is equivalent [14,18] to calculating the big-big radial 
distribution function gbb(r) for a binary mixture using the 
test particle route; i.e., one fixes a big sphere at the origin and 
computes the inhomogeneous density profile of the big spheres 
ρb(r) by minimizing the mixture free-energy functional for 
this spherical geometry. Then gbb(r; ρb) = ρb(r)/ρb and the 
depletion potential is given by 

−βW (r) = lim ln gbb(r; ρb), for r >  σb. (13) 
ρb→0 

In Refs. [14,18], for all cases considered, it was demon
strated that a bulk packing fraction ηb = 10−4 of the big 
spheres was sufficiently small to ensure that the depletion 
potential calculated from gbb(r) had converged to the limiting 
form. In a very recent paper Feng and Chapman [49] used the  
mixture WB theory to calculate gbb(r) via the test particle 
route. For size ratios q = 0.1 they report good agreement 
with existing simulation results [50] for concentrations of 
the big hard spheres as small as 0.002 and total packing 
fractions as large as 0.4. However, the packing fraction ηb 

is still too high to be appropriate for determining the depletion 
potential. 

Roth et al. [14] also introduced a parameterized form for the 
depletion potential obtained from their DFT insertion method 
calculations. Their motivation was to provide an explicit form 
W = 1/2(1/q + 1) W̃ (x,ηs

r ), with x = h/σs and h = r − σb 

the separation between the surfaces of the big spheres, that 
would be valid for a range of size ratios q and reservoir 
packing fractions ηs

r and therefore efficacious in studies of the 
phase behavior and correlation functions of binary hard sphere 
mixtures. The authors were influenced by the comprehensive 
simulation studies of Dijkstra et al. [4], which had employed 
a very simplified (third-order virial expansion) formula for the 
depletion potential derived in Ref. [35]. Roth et al. aimed to 
provide a formula, convenient for simulations of an effective 
one-component fluid, that captured both the short-range 
depletion attraction and the long-range oscillatory behavior 
of W (r). Such a formula is, of course, also useful in making 
comparisons between theory and experimental measurements 
of the depletion potential. Their formula for W̃ consists of a 
third-order polynomial at small x and an exponentially damped 
oscillatory function at large x accounting for the correct 
asymptotic decay [14]. Comparisons made for ηs

r between 0.1 
and 0.3 and different values of q showed that the parametrized 
form gave a good fit to the results of the numerical calculations. 
Largo and Wilding [37] employed this parametrized form in 
simulation studies of the (metastable) fluid-fluid critical point 
of the effective one-component fluid, comparing their results 
with those from the much simpler parametrized form used in 
Ref. [4]. 

In the present study we noticed that the parametrization in 
Ref. [14] did not recover the correct Asakura-Oosawa limiting 
behavior as ηs

r → 0, and this restricts its regime of application. 
Since we are concerned with making direct quantitative 
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comparisons between DFT and the present simulation we 
performed a set of new numerical DFT insertion calculations, 
avoiding parametrization. 

B. Derjaguin and morphometric approximations 

A much used theoretical tool of colloid science is the 
Derjaguin approximation [51] that relates the force between 
two large convex bodies immersed in a fluid consisting of much 
smaller particles or molecules to the integral of the excess 
pressure of the same fluid contained between two parallel 
walls. In recent years there has been considerable discussion 
about the regime of validity of the Derjaguin approximation 
for our present case of a fluid of small hard spheres confined 
between two fixed big hard spheres or between a planar hard 
wall and a single big hard sphere. The reader is referred to 
Refs. [9,14,35,52,53]. Herring and Henderson [8,9] performed 

rsimulations for the wall-sphere case for q = 0.05 and ηs = 
0.3 and 0.4, comparing their results for the depletion force 
with those from the Derjaguin approximation and from the 
DFT insertion method [14]. In the present work we perform 
equivalent comparisons, for the sphere-sphere case, using what 
we believe is much more accurate simulation data for the 
depletion potential. 

As  shown in Ref. [35] the depletion potential difference for 
hard spheres obtained from the Derjaguin approximation can 
be expressed succinctly as 

�π 
WDer(h) − WDer(σs) = −  (σs + σb)(σs − h)

2 
1 � � � � × 
2 
p ηs

r (σs − h) + 2γ ηs
r ; 

0 < h < σs,	 (14) 

rwhere h is the separation between the surfaces,	 p(ηs ) is  
rthe pressure of the small sphere reservoir, and γ (ηs ) is the  

surface tension between a single planar hard wall and the small 
sphere fluid. Within the Derjaguin approximation the potential 
between a wall and a single big sphere is precisely twice that 
between two big spheres: � is 1 for sphere-sphere and 2 for 
wall-sphere. Expressions for the pressure and surface tension 
are listed in Appendix A of Ref. [24]. Another expression for 
the surface tension due to D. Henderson and Plischke [54] as  
obtained by fitting simulation data was used in Ref. [9]. For 
h > σs the depletion potential depends on the excess grand 
potential of the small sphere fluid confined in the planar 
hard wall slit, which must be obtained from simulation or 
DFT [24]. 

Morphometric thermodynamics [32] was developed to 
calculate the solvation free energy (excess grand potential) of 
large convex bodies immersed in a solvent. Its application to 
determining depletion potentials is described in Refs. [24,31], 
where it is shown that 

WMorp(h) = −p�V (h A(h) − κ�C(h) − 4π ¯ (15)) − γ� 	 κ, 

for 0 < h < σs . Here  �V (h) and �A(h) are the volume 
and surface area of the overlap of exclusion (depletion) 
zones around the big spheres (or a wall and a big sphere) 
and �C(h) is the integrated mean curvature of the overlap 
volume. The thermodynamic coefficients are the pressure p, 
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surface tension γ , and the two bending rigidities κ and κ̄; 
rthese four quantities are functions of ηs .The fourth term is 

the difference in integrated Gaussian curvatures between a 
dumbbell (4π ) and two disconnected spheres (8π ). For h > σs 

the dumbbell separates into two disconnected spheres. Thus 
WMorp(h > σs) = 0. Explicit formulas are given in Ref. [24] 
for the geometrical quantities and for the four thermodynamic 

rcoefficients. Note that WMorp(σs 
−) = −4πκ̄(ηs ), independent 

of size ratio. This term is small in comparison with the 
others. 

In order to connect with the Derjaguin approxima
tion we invoke the colloidal limit, i.e., q → 0. Then the 
difference 

WMorp(h) − WMorp(σs) 

�π 1 � � � � = −  (σs + σb)(σs − h) p ηr (σs − h) + 2γ ηr 

2	 2 s s 

−κ ηs
r π2 �(σs − h)(σs + σb)/2, (16) 

for 0 < h < σs . Since κ is positive the morphometric approach 
contributes an additional attractive term, augmenting the at
traction from the pressure [�V (h)] term. Here γ is negative so 
the surface tension [�A(h)] term gives a repulsive contribution 
to the depletion potential. The physical interpretation of the 
third term in Eq. (15) or (16) is of a line contribution to 
the effective interaction associated with the circumference 
of the edge of the annular wedge formed between the two 
exclusion spheres where the line tension is −κπ/2 [31]. As √ 
this term is proportional to � (not to �) Derjaguin scaling is 
violated [24]. 

The morphometric analysis must break down in the limit 
h → σs where Eq. (15) or (16) predicts that the depletion 
force is singular, diverging as (σs − h)−1/2. The reasons for 
this unphysical limiting behavior are associated with problems 
of self-overlapping surfaces as explained in Refs. [24,31]. 
However, away from this limit one might expect the elegant 
geometrical arguments underlying the morphometric analysis 
to capture the essential physics. Indeed the comparisons with 
brute force DFT results for the depletion force in Ref. [31] 

rindicated rather good agreement for a range of q and ηs = 
0.314. 

In Sec. IV we compare the results of Eqs. (14) and (15) with 
our simulation data and with results from the DFT insertion 
method. 

IV. RESULTS 

A. Test case 

We have tested the ability of the GCA to accurately 
determine effective potentials by applying it to the case of the 
Asakura-Oosawa (AO) model [33,34]. This model describes 
colloidal hard-spheres in a solvent of noninteracting point 
particles modeling ideal polymer that have a hard-particle 
interaction with the colloids. Although not the case of additive 
hard-spheres which is our primary focus in this paper, the 
extremely nonadditive AO model does provide a very useful 
test bed for our simulation methodology because the exact 
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form of the depletion potential is known, taking the form [34] 

(1+q)3 3r 

βWAO(r) = −ηs
r 

q3 1 − 2σb(1+q) 

0, 

where σs is the “polymer” diameter; i.e., the colloid-polymer 
pair potential is infinite for r <  (σb + σs)/2. 

Simulation measurements of g(r) ≡ gbb(r) were performed 
for the AO model using the GCA for a system comprising a 
pair of hard spheres in a cubic box of linear dimension L = 3σ 

in equilibrium with a reservoir of small particles having 
size ratio q = 0.1. Since the small particles are mutually 
noninteracting, the chemical potential of the reservoir is just 
that of an ideal gas. The depletion potential was calculated 
as βW (r) = − ln[g(r)], and the results were corrected for 
finite-size effects according to the procedure described in 
Sec. II C. In Fig.  2 we compare the results of simulations 
of the effective potential with the exact result. Data are shown 
for various values of the reservoir packing fraction. In each 
instance, the simulation results (symbols) are indistinguishable 
from the analytical form (lines) within the very small statistical 
errors, a finding that supports the validity and accuracy of 
the simulations and the procedure for correcting finite-size 
effects. 

B. Effective potentials for additive hard spheres 

We turn now to our measurements of the effective potential 
for highly size-asymmetrical additive hard spheres and the 
comparison with DFT calculations. Similarly to the case of 
the AO model, our simulations treat the small particles grand 
canonically, i.e., their number fluctuates under the control of a 
chemical potential μr

s . The  value of  μr
s is chosen to yield some 
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FIG. 2. (Color online) A comparison of GCA simulation mea
surements of the depletion potential of the AO model with the exact 
analytical form. The size ratio is q = 0.1, and data are shown for 
four values of the reservoir packing fraction. Symbols are results 
from GCA measurements of g(r) for a pair of big particles, corrected 
for finite-size effects and transformed via βW (r) = − ln[g(r)]. 
Statistical errors are smaller than the symbol size. Lines are the exact 
AO effective potential, Eq. (17). 

βW
(r

) 
A

O
 

3 +
2σb 

3(1
r 

+q)3 , σb < r < σb + σs (17) 
r � σb + σs, 

nominated value of the packing fraction of small particles ηr 
s 

in the notional reservoir. Thus the simulations require prior 
knowledge of μs

r (ηs
r ). In principle, one could employ the 

Carnahan-Starling (CS) approximation [55] to estimate the 
requisite chemical potential. However, in tests we found this 
approximation to be insufficiently accurate for our purposes. 
For instance, taking ηs

r = 0.32 as an example, if we employ 
the CS value for the chemical potential, we actually measure 
η̄s

r = 0.3195, which, while close to the target, lies outside the 
range of fluctuations in ηs

r that occur in a large simulation 
box. In order to determine μr

s more accurately we therefore 
performed a series of accurate grand canonical simulations for 
the pure fluid of small hard spheres in a large box of L = 50σs . 
We then employed histogram reweighting to extrapolate to the 
precise values of the chemical potential that corresponds to the 
various values of ηs

r that we wished to study. These resulting 
estimates are listed in Table I. 

Measurements of the radial distribution function g(r) were  
made for a pair of big hard spheres in equilibrium with a 
reservoir of small hard spheres, for the combinations of values 
of ηs

r and size ratio q shown in Table II. The system size 
was L = 3σb for q = 0.1, while for q = 0.05, 0.02, 0.01, 
where the range of the depletion potential is shorter, L = 2.5σb 

was used. In all cases the depletion potential was obtained 
as βW (r) = − ln[g(r)] with corrections for finite-size effects 
applied as described in Sec. II C. 

1. Comparison of simulation and density functional theory results 

We now examine a selection of the measured effective 
potentials. Data for q = 0.1,ηs

r = 0.2 are shown in Fig. 3. 
Despite our use of a rather small histogram bin size of just 
δr = 0.001 to accumulate estimates of βW (r), the statistical 
fluctuation is sufficiently small that one can simply connect 
the data points by lines. This allows us to better discern 

TABLE I. Measured values of the reduced chemical po
tential βμr

s corresponding to each of the packing fractions ηs
r 

listed. The data were obtained by histogram reweighting the 
results of grand canonical simulations of hard spheres obtained 
at the nearby value of βμr

s predicted by the CS approximation. 
The simulation cell size was L = 50σs . The definition of μr is s 

subject to the convention of choosing the thermal wavelength 
to equal the hard-sphere diameter. 

ηr	 βμr 
s	 s 

0.05	 −1.9079(1) 
0.10	 −0.6770(3) 
0.15	 0.3923(2) 
0.20	 1.5105(1) 
0.32	 5.0472(1) 
0.35	 6.2659(2) 
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TABLE II. Combinations of particle size ratio q and reservoir 2 

-7
1 1.05 1.1 1.15 1.2 1.25 

r/σ
b 

GCA Simulation 
DFT (RF) 
DFT (WB) 
DFT (WB2) 
Morphometric (RF) 
Morphometric (WB2) 
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0 

0.25 

0.5 

0.75 

1 

1.25 

1.5 

-7 
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-6 
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-5 

rFIG. 4. (Color online) As for Fig. 3 but with q = 0.05, ηs = 0.2. 
Also shown are the results of the morphometric approximation 
Eq. (15). 

For this size ratio and these (low) small-sphere packings the 
various versions of FMT perform very well. Data for q = 0.01 

rwith ηs = 0.05 are shown in Fig. 6. In this extreme case the 

1 

rvolume fraction ηs for which we compare simulation estimates of 
depletion potentials with DFT predictions. Values shown in normal 1 

typeface were studied by simulation using the GCA described in 0 
Sec. II A, while those in boldface were studied using staged insertion 
MC as described in Sec. II B. -1 

q	 ηs
r 

βW
(r

) -2 

-3 
0.10 0.05 0.1 0.15 0.20 0.32 0.35 
0.05 0.05 0.1 0.15 0.20 − − -4 

0.02 0.05 0.1 0.15 − − − -5 
0.01 0.05 − − − − − 

-6 

differences between the simulation results and those of the 
DFT calculations using the insertion method, which are also 
included on the plot. Data for three versions of DFT are 
shown, namely, the Rosenfeld (RF), White Bear (WB), and 
White Bear 2 (WB2) functionals. Clearly for these parameters 
the overall agreement is very good. To quantify the extent 
of the accord, the two insets to Fig. 3 show a comparison in 
the range of separations close to hard-sphere contact (left inset) 
and around the first maximum (right inset). These show that 
near contact, WB2, fares slightly better than WB, which is in 
turn better than RF. Near the first maximum in the potential 
however, the trend is reversed, and RF has the greatest accord 
with the simulation data, while WB is better than WB2. 

rA similar picture emerges for q = 0.05,ηs = 0.2 as shown  0 
in Fig. 4. Although here the simulation data are not as smooth 
as for q = 0.1, the form and magnitude of the deviations from -1 

the DFT are similar. We comment later on the results of the 
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morphometric approximation, Eq. (15). 
Generally speaking, the smaller the size ratio, q, the  lower  

rthe maximum packing fraction ηs for which we can obtain 
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rgood statistics with the GCA. Data for q = 0.02, with ηs = 0.1 

and ηs = 0.15, are shown in Figs. 5(a) and 5(b), respectively. -4 
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FIG. 3. (Color online) Simulation and DFT results for the hard-
sphere depletion potential βW (r) for  q = 0.1, ηs

r = 0.2. The abscissa -12 

is the separation of hard-sphere centers expressed in units of the 
big particle diameter σb. The two insets expand the region close 
to hard-sphere contact (left panel) and around the first maximum FIG. 5. (Color online) As for Fig. 3 but with (a) q = 0.02, 

r	 r(right panel).	 ηs = 0.1 and  (b)  q = 0.02, ηs = 0.15. 
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from the three functionals agree quite well with one another 
and with simulation near contact. 

1


0


-1

2. Comparison with Derjaguin and morphometric approximations 

-2 
In this subsection we make comparisons between our 

simulation and DFT results with those from the approxi

βW
(r

)

mations described in Sec. III B. Recall that the Derjaguin 
approximation is specifically designed to tackle small size 

-5 

-6 

-7 

-8 

rFIG. 6. (Color online) As for Fig. 3 but with q = 0.01, ηs = 0.05. 

insertion DFT results are almost indistinguishable from each 
other and from the results of simulation. However, one should 
note that there is still a maximum in W (r); one is not yet in the 
AO limit, although the contact value is close to the AO value 
given by Eq. (17). 

rFor our system, the GCA is operable for ηs � 0.2. To 
go beyond this limit we have employed the staged insertion 
algorithm outlined in Sec. II B. Simulation results for q = 

r0.1, ηs = 0.35 are compared with those from DFT calculations 
in Fig. 7. While the simulation data are somewhat noisier, they 
show that in this regime, quite significant discrepancies with 
the DFT insertion method have emerged. The principal form 
of the discrepancy, i.e., DFT underestimates the height of the 
first maximum, is similar in form but greater in magnitude than 

rthat seen using the GCA at smaller values of ηs (see Fig. 3). 
Once again RF fares better than the two WB functionals but 
underestimates the first maximum by about 0.5kBT . Results 

4 

ratios. In Fig. 4 we compare the results of the morphometric 
approximation Eq. (15) with those from simulation and DFT. 
Two sets of thermodynamic coefficient were used: RF and 
WB2 [24]. Both versions underestimate the maximum of the 
depletion potential and overestimate the magnitude of the 

rpotential at contact for q = 0.05 and ηs = 0.2. By contrast 
rfor q = 0.1 and ηs = 0.35, Fig. 7 shows that both versions of 

the morphometric approximation overestimate the maximum 
and underestimate the magnitude of the potential at contact. 
Figure 7 also shows a pronounced minimum for h close to 
σs . This feature is absent in both simulation and DFT. It is 
associated with the unphysical divergence of the line tension 
contribution to the depletion force arising in the morphometric 
treatment. Recall that WMorph is zero for separations h > σs . 

Figure 8(a) compares the depletion potential difference 
obtained from simulation and insertion method DFT for 

r q = 0.1 and ηs = 0.35 with results from the Derjaguin 
approximation (where plotting the difference is the natural 
choice [35]) and morphometric approximations, Eqs. (14) and 
(15), respectively. For this value of q the packing fraction of 
the small spheres is sufficiently large to enter the regime where 
fluid-fluid phase separation might occur, as discussed below 
in Sec. IV B 3. Thus it is interesting to observe how well these 
explicit approximations perform. Similar remarks apply for 

r q = 0.05 and ηs = 0.2, for which comparisons are presented 
in Fig. 8(b). 

One sees in Fig. 8(a) that the Derjaguin approximation 
is very poor. Overall the morphometric approximations fare 
considerably better than Derjaguin with RF better than WB2 
near the maximum. However, both morphometric versions 
overestimate the magnitude of the contact value by about 
0.5kBT . Note once again the minimum close to h/σs = 1 

1 1.1 1.2 1.3 1.4 1.5 
r/σ

b 

βW
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) 

Staged insertion MC 
DFT (RF) 
DFT (WB) 
DFT (WB2) 
Morphometric (RF) 
Morphometric (WB2) 
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0 

-2 

-4 

-6 

rFIG. 7. (Color online) The depletion potential for q = 0.1, ηs = 

for this packing fraction. The situation is clearly different in 
Fig. 8(b), where the Derjaguin and morphometric approxima
tions are reasonably good; they bracket the simulation and 
DFT results. The two morphometric versions yield results that 
are very close, and even in this difference plot one sees that 
these fall below the simulation results both at maximum and 

rat contact. At this smaller value of η there is no minimum s 

visible in the depletion potential. Although plotting the 
difference appears to improve the level of agreement between 
morphometric and simulation, one should recall that it is the 
actual depletion potential displayed in Figs. 4 and 7, which 

rmatters, e.g., in determining B2(ηs ), to which we now turn. 

3. Second virial coefficients 
0.35 obtained using the staged insertion simulation method and DFT. 
The simulation data points represent the results of 150 independent While the various simulation and DFT estimates of effective 

rmeasurements of βW (r) made at various fixed values of the big potentials show generally good agreement at low ηs , the  
rparticle separation, though concentrated in the range r < 1.12σb. Also differences grow with increasing ηs , and it is natural to enquire 

shown are the results of the morphometric approximation Eq. (15). as to the likely implications for the properties of the bulk 
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FIG. 8. (Color online) Comparison of βW (h) − βW (σs) obtained 
from simulation and DFT for (a) q = 0.1, ηs

r = 0.35 (see Fig. 7) and  
(b) q = 0.05, ηs

r = 0.2 (see Fig. 4) with results of the Derjaguin 
Eq. (14) and morphometric approximations Eq. (15). 

mixture and in particular phase behavior. A useful indicator in 
this regard is the value of the second virial coefficient B2: � ∞ 

B2 = −2π (e −βφeff (r) − 1)r 2 dr, (18) 
0 

where the effective pair potential is defined in Eq. (1). 
Previous work by Vliegenthart and Lekkerkerker [56] 

and Noro and Frenkel [57] has shown that an extended 
corresponding states behavior applies to fluids that share the 
same value of B2. Specifically, the measured values of B2 at 
fluid-fluid criticality were found to be similar across a wide 
range of model potentials. Subsequent work by Largo and 
Wilding [37] examined this criterion explicitly for the case of 
two DFT-based hard-sphere effective potentials that had been 
fitted to analytical forms and parameterized in terms of the 
reservoir packing fraction ηs

r [4,14]. Using simulation of a 
single-component fluid interacting via a pair potential Eq. (1) 
with W (r) given by these parameterized depletion potentials, 
the value of ηr at which the metastable fluid-fluid critical s 

point occurs was determined using an accurate approach based 
on finite-size scaling [37,58]. Interestingly for both q = 0.1 
and 0.05 and both choices of parameterized potentials, the 
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value of B2 for the depletion potential at criticality was in 
quantitative agreement with that of the adhesive hard-sphere 
model (AHS) at its fluid-fluid critical point as determined 
separately in simulations by Miller and Frenkel [59]. These 
authors report a critical value B2

AHS = −1.207B2
HS, where 

the hard spheres’ second virial coefficient B2
HS = 2πσb 

3/3. 
The level of agreement was much greater than that seen 
for more general model potentials (such as the square well 
or Lennard-Jones model studied by Noro and Frenkel), 
suggesting that the quasi-universality of the critical point B2 

value holds particularly closely for effective potentials whose 
attractive piece is very short range in nature, as pertains to 
highly size-asymmetrical hard-sphere mixtures. Further con
firmation of this has been found very recently in simulations 

1 of the AO potential where, for q = 0.1, Ashton [60] has found 
that the metastable critical point occurs at ηs

r = 0.249(1), to be 
compared with the prediction ηs

r = 0.2482 based on matching 
to B2

AHS. 
In practical terms the universality of B2 at the fluid-fluid 

critical point implies that one can predict the critical point value 
of ηs

r for effective one-component treatments of hard-sphere 
mixtures at small q simply by matching the corresponding B2 

to the universal value. Conversely, it follows that comparison 
of B2 values as a function of ηs

r for different potentials 
provides a sensitive measure of the extent to which their 
phase behavior differs. We have made such a comparison 
for effective potentials obtained from DFT, the morphometric 
approximation, and simulation for q = 0.1, 0.05, and 0.02. 
The results are shown in Figs. 9(a)–9(c) and demonstrate that at 
the two larger values of q even the relatively small differences 

1	 that we observe between the DFT and simulation estimates 
of effective potentials could lead to significant differences in 
the small particle packing fractions at which fluid-fluid phase 
separation is predicted to occur. Specifically, for q = 0.1 based 
on this B2 criteria, it seems that the DFT with the Rosenfeld 
functional underestimates the putative critical point value of 
ηr by some 13%, while the WB2 functional underestimates s 

it by some 9%.3 For q = 0.05 [Fig. 9(b)] the discrepancy 
between DFT and simulation has fallen to about 4%, while 
for q = 0.02 [Fig. 9(c)], the values of B2 for the hard-sphere 
mixtures arising from the various DFT flavors agree very 
well with one another and with simulation, at least for the 
range of ηs

r at which bulk phase separation is expected to 
occur. They also agree well with the AO model, suggesting 
that the additive and extreme nonadditive models will have 
very similar phase behavior at this value of q. Recall that 
for q <  0.154 the mapping of the binary AO mixture to an 
effective one-component Hamiltonian, with the AO depletion 
potential Eq. (17), is exact, and we might also expect that for 
very small q the phase behavior of the full binary hard-sphere 
mixture, at physically relevant (small) values of ηs

r , is described 
accurately by the depletion pair potential we calculate here. 
Many-body contributions should be negligible. 

3We note that in Refs. [36,56] an empirical (average) value B2
crit = 

−1.5B2
HS was used to estimate the critical point. We prefer the AHS 

value as an indicator of the onset of phase separation since we focus 
on short-range (sticky) potentials, following Largo and Wilding [37]. 
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FIG. 9. (Color online) (a) Comparison of the second virial 
coefficient B2 [Eq. (18)] derived from DFT and morphometric 
and simulation measurements of the effective potential for q = 0.1 

rand various η . The horizontal dashed line indicates the value of s 

BAHS = −2.527σ 3 for which fluid-fluid criticality was found in the2 b 

adhesive hard sphere model [37,59]; see text. For values of B2 below 
this line, fluid-fluid phase separation is expected. Panels (b) and (c) 
show corresponding plots for q = 0.05 and 0.02, respectively. Unless 
error bars are shown, statistical errors in simulation data points do 
not exceed the symbol size. 

Interestingly, the DFT data for B2 exhibit a broad minimum 
rwith increasing ηs , as can be seen for q = 0.1 in Fig.  9(a). 

The same feature has previously been reported in Ref. [36]. 
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A similar minimum occurs within the DFT for q = 0.05 at 
rηs ≈ 0.38 (not shown in Fig. 9(b)). The origin of the upturn 

in the value of B2 beyond the minimum appears to be due to 
the fact that the magnitude of the first repulsive maximum of 

rW (r) increases faster with ηs than the depth of the potential 
well at contact. Unfortunately we could not corroborate the 
authenticity of this feature via simulation because it occurs at 

rlarger values of ηs than are currently accessible to us. Should 
it prove real (rather than being an artifact of the DFT), it raises 
the intriguing possibility that fluid-fluid phase separation may 

roccur only within a certain range of ηs . 
Also plotted in Fig. 9 are the results of the morphometric 

approximation Eq. (15) for  B2. Like the DFT results these 
show minima at all q studied (though only that for q = 0.1 

ris visible in the plotted ranges). For q = 0.1, B2(ηs ) does not 
cross the AHS line, implying that the theory fails to predict 
fluid-fluid phase separation at this size ratio. At smaller q, the  
agreement with simulation is better, but still poorer than DFT. 
It is disappointing that both versions of the morphometric 
approximation perform poorly for q = 0.02, where we find 
the results are substantially different from those of the AO 
model. The discrepancy with simulation for B2 appears to arise 
primarily from a failure of the morphometric approximation 
to correctly predict the additive constant in the potential, as 
shown from the comparison of the potentials of Figs. 4 and 7 
with the shifted representation of Fig. 8. While morphometric 
results for the depletion force [24,31] might be in reasonable 
agreement with DFT and simulation, any additive shift is 
important for B2. 

V. DISCUSSION 

In summary, we have employed bespoke MC simulation 
techniques to obtain direct and accurate simulation measure
ments of depletion potentials in highly size asymmetrical 
binary mixtures of hard spheres having q � 0.1. Small 
particles were treated grand canonically, the value of the 
chemical potential being chosen to target prescribed values 

rof the reservoir packing fraction ηs . The simulation results 
were compared with new DFT calculations (performed using 
the insertion method) based on the Rosenfeld, White Bear, and 

rWhite Bear Mark 2 functionals. For ηs � 0.2 generally good 
agreement with simulation was found at all size ratios studied, 

rthough on increasing the packing fraction to ηs = 0.35 at 
q = 0.1 significant discrepancies between the various flavors 
of DFT and the simulation estimates were evident. In this latter 
regime, Rosenfeld (RF) was found to be somewhat better than 
the other functionals in reproducing the height of the first 
maximum of the effective potential, while White Bear 2 was 
marginally the best of the three with regard to its prediction 
for the contact value and for second virial coefficients. 

Overall our results show that the DFT insertion method 
provides a reasonably accurate description of effective po
tentials for highly size asymmetrical hard sphere mixtures 
at least in the range of small particle packing fractions at 
which fluid-fluid phase separation is likely to occur. Indeed at 

rηs = 0.35, and q = 0.1 DFT was found to be more accurate 
than the morphometric and Derjaguin approximations, the 
latter providing a particularly poor prediction. This conclusion 
is partly at odds with that of Herring and Henderson [8,9] 
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who assert that both DFT and the Derjaguin approximation 
provide descriptions that are almost equally poor compared to 
simulation data (see Fig. 7 of Ref. [9], which refers to q = 0.05 
and ηs

r = 0.3 and 0.4) and advocate in particular that neither 
approach should be used in the regime of “moderate” ηs

r to 
answer important questions such as the existence of fluid-fluid 
coexistence. While we concur with this assessment in the 
case of the Derjaguin approximation, Herring and Henderson’s 
conclusions regarding the accuracy of DFT calculations were 
reached on the basis of simulation estimates for the effective 
potential which were not obtained directly, but by integrating 
measurements of the interparticle force as outlined in Sec. I A. 
Perhaps as a consequence, their estimates are much noisier (see 
Fig. 6 of Ref. [9]) than those presented in the present work and 
consequently, we believe, do not serve as a sufficiently reliably 
indicator of the accuracy of DFT, especially in the key regime 
where fluid-fluid phase separation might occur. 

Indeed, we have investigated the likely extent of the 
consequences for predictions of phase behavior arising from 
discrepancies between theory and simulation estimates of 
depletion potentials via calculations of the dependence of the 
second virial coefficient on ηr . Previous simulation studies s 

of phase behavior in single-component fluid interacting via 
effective potentials [37] have shown that when the potential 
is very short range, the onset of fluid-fluid phase separation 
occurs at a near-universal value of B2 = −2.527σb 

3. Based 
on this criterion, we found that compared to the effective 
potentials obtained via simulation in the present work, the 
morphometric theory provides the poorest predictions of 
the critical packing fraction of small particles (and fails to 
predict phase separation at all at q = 0.1). Those from DFT 
underestimate the critical packing fraction of small particles 
by about 10% for q = 0.1 and about 4% for q = 0.05. While 
these are significant discrepancies, we do not feel that they 
constitute a “qualitative breakdown” of the DFT insertion 
method approach as suggested by Herring and Henderson 
[8,9] on the basis of their simulation data, at least not in 
the regime where phase separation is expected. Herring and 
Henderson speak of a nanocolloidal regime. We interpret 
this as size ratios q of, say, 0.1 to 0.01. Our present study 
shows that this regime is amenable to accurate simulation 
studies up to values of the small-sphere packing fraction that 
are relevant for investigations of fluid-fluid phase separation 
and that DFT works well in this regime, the focus of the 
present paper. For larger values of ηs

r there are serious issues 
concerning the accuracy of the existing DFT approaches, and 
we shed no new light on this interesting but somewhat extreme 
regime. 
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Turning finally to the outlook for further work on highly 
size-asymmetrical mixtures, it would, of course, be of great 
interest to verify the existence (or otherwise) of the putative 
fluid-fluid critical point in the full two-component size-
asymmetric hard sphere mixture. This topic remains ebullient. 
For example, Ref. [26] provides evidence based on integral 
equation studies of the binary mixture and comparison with 
simulation studies of the effective one-component fluid [4,37] 
for (metastable) fluid-fluid phase separation, and a recent paper 
[61], based on a version of thermodynamic perturbation theory, 
conjectures that additive hard spheres will exhibit fluid-fluid 
separation, albeit metastable with respect to the fluid-solid 
transition, for size ratios in the range 0.01 � q � 0.1. Our 
measurements of B2 for the depletion potentials obtained in our 
simulations provide predictions for the small particle packing 
fraction at which the critical point occurs. The accuracy of 
these predictions was demonstrated for an effective potential 
exhibiting oscillations [37] and for the (nonoscillatory) AO 
potential with q = 0.1 [60]. While this does not prove that 
the B2 criterion is sufficiently robust to predict phase behavior 
accurately for all effective potentials, i.e., all size ratios, it 
shows that the criterion is a very powerful indicator for 
the onset of fluid-fluid phase separation. We are currently 
employing a grand canonical version of the staged insertion 
MC method [43] to investigate its usefulness in this context. 

The simulation methods we develop here can be applied 
to any short-range potential, and it would also be of interest 
to examine the influence on the effective potential of adding 
small amounts of finite attraction or repulsion to the bs 

and ss interactions. This would allow us to better model 
real colloidal systems, where one can have a variety of 
interaction potentials, and where, even in systems (such as 
sterically stabilized PMMA) that approximate hard spheres 
rather well, one expects residual non-hard-sphere interactions 
[62,63]. Previous work [36,64] has suggested that the effects 
of such residual interactions may be represented in terms of 
a nonadditive hard-sphere mixture. It would be of interest to 
examine this proposal explicitly using accurate simulation data 
and DFT calculations. 
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