3,403 research outputs found

    Conductivity Imaging in Plates Using Current Injection Tomography

    Get PDF
    The task of reconstructing an unknown distribution of electrical conductivity is widely recognized as a central theoretical problem in eddy-current nondestructive evaluation [1]. Rather than using an eddy-current method, we address this problem using DC injection of current into conductive materials. Experimental methods of the magnetic imaging of injected currents using high-resolution SQUID magnetometers have been described elsewhere [2]. In this paper we describe a tomographic method for using magnetically-imaged, injected currents to reconstruct distributions of electrical conductivity. Much of what we describe should also be applicable to data obtained using uniform colinear eddy currents induced by means of planar sheet inducers [4, 5]

    A mathematical model for electrical stimulation of a monolayer of cardiac cells

    Get PDF
    BACKGROUND: The goal of our study is to examine the effect of stimulating a two-dimensional sheet of myocardial cells. We assume that the stimulating electrode is located in a bath perfusing the tissue. METHODS: An equation governing the transmembrane potential, based on the continuity equation and Ohm's law, is solved numerically using a finite difference technique. RESULTS: The sheet is depolarized under the stimulating electrode and is hyperpolarized on each side of the electrode along the fiber axis. CONCLUSIONS: The results are similar to those obtained previously by Sepulveda et al. (Biophys J, 55: 987–999, 1989) for stimulation of a two-dimensional sheet of tissue with no perfusing bath present

    Can ultrasound be used to stimulate nerve tissue?

    Get PDF
    BACKGROUND: The stimulation of nerve or cortical tissue by magnetic induction is a relatively new tool for the non-invasive study of the brain and nervous system. Transcranial magnetic stimulation (TMS), for example, has been used for the functional mapping of the motor cortex and may have potential for treating a variety of brain disorders. METHODS AND RESULTS: A new method of stimulating active tissue is proposed by propagating ultrasound in the presence of a magnetic field. Since tissue is conductive, particle motion created by an ultrasonic wave will induce an electric current density generated by Lorentz forces. An analytical derivation is given for the electric field distribution induced by a collimated ultrasonic beam. An example shows that peak electric fields of up to 8 V/m appear to be achievable at the upper range of diagnostic intensities. This field strength is about an order of magnitude lower than fields typically associated with TMS; however, the electric field gradients induced by ultrasound can be quite high (about 60 kV/m(2 )at 4 MHz), which theoretically play a more important role in activation than the field magnitude. The latter value is comparable to TMS-induced gradients. CONCLUSION: The proposed method could be used to locally stimulate active tissue by inducing an electric field in regions where the ultrasound is focused. Potential advantages of this method compared to TMS is that stimulation of cortical tissue could be highly localized as well as achieved at greater depths in the brain than is currently possible with TMS

    Sensor Development for High Temperature Viscosity Measurement

    Full text link
    In previous years, we have presented several results on viscosity measurements using conventional and laser ultrasound techniques [1,2,3]. These results are based on experiments conducted at room temperature. The principle[1], in essence, is to launch ultrasonic shear waves at the interface of a solid and a viscous fluid. The amplitude and phase of the reflected waves were correlated to the viscosity of the fluid.</p

    A universal model for mobility and migration patterns

    Get PDF
    Introduced in its contemporary form by George Kingsley Zipf in 1946, but with roots that go back to the work of Gaspard Monge in the 18th century, the gravity law is the prevailing framework to predict population movement, cargo shipping volume, inter-city phone calls, as well as bilateral trade flows between nations. Despite its widespread use, it relies on adjustable parameters that vary from region to region and suffers from known analytic inconsistencies. Here we introduce a stochastic process capturing local mobility decisions that helps us analytically derive commuting and mobility fluxes that require as input only information on the population distribution. The resulting radiation model predicts mobility patterns in good agreement with mobility and transport patterns observed in a wide range of phenomena, from long-term migration patterns to communication volume between different regions. Given its parameter-free nature, the model can be applied in areas where we lack previous mobility measurements, significantly improving the predictive accuracy of most of phenomena affected by mobility and transport processes.Comment: Main text and supplementary informatio

    On the nonemptiness of approximate cores of large games

    Get PDF
    We provide a new proof of the nonemptiness of approximate cores of games with many players of a finite number of types. Earlier papers in the literature proceed by showing that, for games with many players, equal-treatment cores of their “balanced cover games,” which are nonempty, can be approximated by equal-treatment \varepsilon ? -cores of the games themselves. Our proof is novel in that we develop a limiting payoff possibilities set and rely on a fixed point theorem

    Impact of the Specific Mutation in KRAS Codon 12 Mutated Tumors on Treatment Efficacy in Patients with Metastatic Colorectal Cancer Receiving Cetuximab-Based First-Line Therapy: A Pooled Analysis of Three Trials

    Get PDF
    Purpose: This study investigated the impact of specific mutations in codon 12 of the Kirsten-ras (KRAS) gene on treatment efficacy in patients with metastatic colorectal cancer (mCRC). Patients: Overall, 119 patients bearing a KRAS mutation in codon 12 were evaluated. All patients received cetuximab-based first-line chemotherapy within the Central European Cooperative Oncology Group (CECOG), AIO KRK-0104 or AIO KRK-0306 trials. Results: Patients with KRAS codon 12 mutant mCRC showed a broad range of outcome when treated with cetuximab-based first-line regimens. Patients with tumors bearing a KRAS p.G12D mutation showed a strong trend to a more favorable outcome compared to other mutations (overall survival 23.3 vs. 14-18 months; hazard ratio 0.66, range 0.43-1.03). An interaction model illustrated that KRAS p.G12C was associated with unfavorable outcome when treated with oxaliplatin plus cetuximab. Conclusion: The present analysis suggests that KRAS codon 12 mutation may not represent a homogeneous entity in mCRC when treated with cetuximab-based first-line therapy. Copyright (C) 2012 S. Karger AG, Base

    Does Tribolium brevicornis Cuticular Chemistry Deter Cannibalism and Predation of Pupae?

    Get PDF
    The cuticular hydrocarbons of insects are species-specific and often function as semiochemicals. The activity of Tribolium brevicornis cuticular hydrocarbons as feeding deterrents that ostensibly function to prevent pupal cannibalism and predation was evaluated. The cuticular hydrocarbons of T. brevicornis pupae were characterized and flour disk bioassays conducted with individual and combined extract components incorporated into artificial diets on which Tribolium adults fed for six days. Feeding by T. brevicornis and T. castaneum on flour disks containing cuticular extracts of T. brevicornis pupae resulted in reduced consumption and weight loss relative to feeding on control flour disks. In both cases, feeding deterrence indices exceeded 80% suggesting that T. brevicornis cuticular hydrocarbons could function to deter cannibalism and predation of pupae by larvae and adult beetles. Sixteen different cuticular hydrocarbons were identified in T. brevicornis pupal extracts. Eight of the commercially available linear alkanes were tested individually in feeding trials with eight Tribolium species. One compound (C28) significantly reduced the amount of food consumed by three species compared to control disks, whereas the compounds C25, C26, and C27 elicited increased feeding in some species. Four other compounds had no effect on consumption for any species. When four hydrocarbon mixtures were tested for synergistic deterrence on T. brevicornis and T. castaneum, none significantly influenced consumption. Our results indicate that the cuticular chemistry of T. brevicornis pupae could serve to deter predation by conspecific and congeneric beetles

    Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.

    Get PDF
    Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification
    corecore