20 research outputs found

    Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults - a pilot study

    Get PDF
    Background: Lipid abnormalities, enhanced inflammation and oxidative stress seem to represent a vicious circle in atherogenesis, and therapeutic options directed against these processes seems like a reasonable approach in the management of atherosclerotic disorders. Krill oil (RIMFROST Sublime®) is a phospholipid-rich oil with eicosapentaenoic acid (EPA): docosahexaenoic acid (DHA) ratio of 1.8:1. In this pilot study we determined if krill oil could favourable affect plasma lipid parameters and parameters involved in the initiation and progression of atherosclerosis. Methods: The study was conducted as a 28 days intervention study examining effect-parameters of dietary supplementation with krill oil (832.5 mg EPA and DHA per day). 17 healthy volunteers in the age group 18–36 (mean age 23 ± 4 years) participated. Plasma lipids, lipoprotein particle sizes, fatty acid composition in plasma and red blood cells (RBCs), plasma cytokines, antioxidant capacity, acylcarntines, carnitine, choline, betaine, and trimethylamine-N-oxide (TMAO) were measured before and after supplementation. Results: Plasma triacylglycerol (TAG) and large very-low density lipoprotein (VLDL) & chylomicron particle concentrations decreased after 28 days of krill oil intake. A significant reduction in the TAG/HDL cholesterol resulted. Krill oil supplementation decreased n-6/n-3 polyunsaturated fatty acids (PUFA) ratio both in plasma and RBCs. This was due to increased EPA, DHA and docosapentaenoic acid (DPA) and reduced amount of arachidonic acid (AA). The increase of n-3 fatty acids and wt % of EPA and DHA in RBC was of smaller magnitude than found in plasma. Krill oil intake increased the antioxidant capacity, double bond index (DBI) and the fatty acid anti-inflammatory index. The plasma atherogenicity index remained constant whereas the thrombogenicity index decreased. Plasma choline, betaine and the carnitine precursor, γ-butyrobetaine were increased after krill oil supplementation whereas the TMAO and carnitine concentrations remained unchanged. Conclusion: Krill oil consumption is considered health beneficial as it decreases cardiovascular disease risk parameters through effects on plasma TAGs, lipoprotein particles, fatty acid profile, redox status and possible inflammation. Noteworthy, no adverse effects on plasma levels of TMAO and carnitine were found.publishedVersio

    Changes in lipoprotein particle subclasses, standard lipids, and apolipoproteins after supplementation with n-3 or n-6 PUFAs in abdominal obesity: A randomized double-blind crossover study

    Get PDF
    Background & aims Marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower circulating levels of triacylglycerols (TAGs), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) may reduce cholesterol levels. Clinical studies on effects of these dietary or supplemental PUFAs on other blood fat fractions are few and have shown conflicting results. This study aimed to determine effects of high-dose supplemental n-3 (EPA + DHA) and n-6 (LA) PUFAs from high-quality oils on circulating lipoprotein subfractions and standard lipids (primary outcomes), as well as apolipoproteins, fatty acids, and glycemic control (secondary outcomes), in females and males with abdominal obesity. Methods This was a randomized double-blind crossover study with two 7-wk intervention periods separated by a 9-wk washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (TAG fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we investigated lipoprotein particle subclasses by nuclear magnetic resonance spectroscopy, as well as standard lipids, apolipoproteins, fatty acid profiles, and glucose and insulin. Data were analyzed by linear mixed-effects modeling with ‘subjects’ as the random factor. Results The difference between interventions in relative change scores was among the lipoprotein subfractions significant for total very-low-density lipoproteins (VLDLs) (n-3 vs. n-6: −38%∗ vs. +16%, p < 0.001; ∗: significant within-treatment change score), large VLDLs (−58%∗ vs. −0.91%, p < 0.001), small VLDLs (−57%∗ vs. +41%∗, p < 0.001), total low-density lipoproteins (LDLs) (+5.8%∗ vs. −4.3%∗, p = 0.002), large LDLs (+23%∗ vs. −2.1%, p = 0.004), total high-density lipoproteins (HDLs) (−6.0%∗ vs. +3.7%, p < 0.001), large HDLs (+11%∗ vs. −5.3%, p = 0.001), medium HDLs (−24%∗ vs. +6.2%, p = 0.030), and small HDLs (−9.9%∗ vs. +9.6%∗, p = 0.002), and among standard lipids for TAGs (−16%∗ vs. −2.6%, p = 0.014), non-esterified fatty acids (−19%∗ vs. +5.5%, p = 0.033), and total cholesterol (−0.28% vs. −4.4%∗, p = 0.042). A differential response in relative change scores was also found for apolipoprotein (apo)B (+0.40% vs. −6.0%∗, p = 0.008), apoA-II (−6.0%∗ vs. +1.5%, p = 0.001), apoC-II (−11%∗ vs. −1.7%, p = 0.025), and apoE (+3.3% vs. −3.8%, p = 0.028). Conclusions High-dose supplementation of high-quality oils with n-3 (EPA + DHA) or n-6 (LA) PUFAs was followed by reductions in primarily TAG- or cholesterol-related markers, respectively. The responses after both interventions point to changes in the lipoprotein–lipid–apolipoprotein profile that have been associated with reduced cardiometabolic risk, also among people with TAG or LDL-C levels within the normal range.publishedVersio

    Sex-specific responses in glucose-insulin homeostasis and lipoprotein-lipid components after high-dose supplementation with marine n-3 PUFAs in abdominal obesity: a randomized double-blind crossover study

    Get PDF
    BackgroundClinical studies on effects of marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) on lipoprotein-lipid components and glucose-insulin homeostasis have shown conflicting results, which may partly be explained by differential responses in females and males. However, we have lacked data on sexual dimorphism in the response of cardiometabolic risk markers following increased consumption of n-3 or n-6 PUFAs.ObjectiveTo explore sex-specific responses after n-3 (EPA + DHA) or n-6 (LA) PUFA supplementation on circulating lipoprotein subfractions, standard lipids, apolipoproteins, fatty acids in red blood cell membranes, and markers of glycemic control/insulin sensitivity among people with abdominal obesity.MethodsThis was a randomized double-blind crossover study with two 7-week intervention periods separated by a 9-week washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we measured lipoprotein particle subclasses, standard lipids, apolipoproteins, fatty acid profiles, and markers of glycemic control/insulin sensitivity.ResultsThe between-sex difference in relative change scores was significant after n-3 for total high-density lipoproteins (females/males: −11%*/−3.3%, p = 0.036; *: significant within-sex change), high-density lipoprotein particle size (+2.1%*/−0.1%, p = 0.045), and arachidonic acid (−8.3%*/−12%*, p = 0.012), and after n-6 for total (+37%*/+2.1%, p = 0.041) and small very-low-density lipoproteins (+97%*/+14%, p = 0.021), and lipoprotein (a) (−16%*/+0.1%, p = 0.028). Circulating markers of glucose-insulin homeostasis differed significantly after n-3 for glucose (females/males: −2.1%/+3.9%*, p = 0.029), insulin (−31%*/+16%, p &lt; 0.001), insulin C-peptide (−12%*/+13%*, p = 0.001), homeostasis model assessment of insulin resistance index 2 (−12%*/+14%*, p = 0.001) and insulin sensitivity index 2 (+14%*/−12%*, p = 0.001), and quantitative insulin sensitivity check index (+4.9%*/−3.4%*, p &lt; 0.001).ConclusionWe found sex-specific responses after high-dose n-3 (but not n-6) supplementation in circulating markers of glycemic control/insulin sensitivity, which improved in females but worsened in males. This may partly be related to the sex differences we observed in several components of the lipoprotein-lipid profile following the n-3 intervention.Clinical trial registrationhttps://clinicaltrials.gov/, identifier [NCT02647333]

    Asymptomatisk covid-19 med usikre testresultater

    Get PDF
    Testing for SARS-CoV-2 ved bruk av PCR- og antistofftester gir et betydelig bidrag i bekjempelsen av covid-19-pandemien. Denne kasuistikken belyser en situasjon der PCRtesting for SARS-CoV-2 reiste flere spørsmål enn testen kunne besvare

    A survey of the antidote preparedness in Norwegian hospitals

    No full text
    Objectives Antidotes are an important part of the emergency preparedness in hospitals. In the case of a major chemical accident or a fire, large quantities of antidotes may be needed within a short period of time. For time-critical antidotes it is therefore necessary that they be immediately available. We wanted to evaluate the antidote preparedness in Norwegian hospitals as regards the national recommendations and compare this with other international guidelines. Methods A digital survey was sent to the 50 hospitals in Norway that treat acute poisonings. Of these, four hospitals are categorised as regional hospitals, 15 as large hospitals and 31 as small hospitals. Each hospital was asked which antidotes they stockpiled from a list of 35 antidotes. The financial costs (low, moderate, high) were added to an established efficacy scale to illustrate the cost-effectiveness of the different antidotes. Results The response rate was 100%. Eleven of fifty (22%) hospitals stockpiled all antidotes recommended for their hospital size. All four regional hospitals had all the recommended antidotes. Large hospitals which were not regional hospitals had the least availability of antidotes, and only one large hospital stockpiled all antidotes recommended for this hospital size. Conclusions We found varying compliance with the national recommendations for antidote storage in hospitals. To strengthen antidote preparedness, we recommend standardised European guidelines to support national guidelines

    Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults - a pilot study

    No full text
    Background: Lipid abnormalities, enhanced inflammation and oxidative stress seem to represent a vicious circle in atherogenesis, and therapeutic options directed against these processes seems like a reasonable approach in the management of atherosclerotic disorders. Krill oil (RIMFROST Sublime®) is a phospholipid-rich oil with eicosapentaenoic acid (EPA): docosahexaenoic acid (DHA) ratio of 1.8:1. In this pilot study we determined if krill oil could favourable affect plasma lipid parameters and parameters involved in the initiation and progression of atherosclerosis. Methods: The study was conducted as a 28 days intervention study examining effect-parameters of dietary supplementation with krill oil (832.5 mg EPA and DHA per day). 17 healthy volunteers in the age group 18–36 (mean age 23 ± 4 years) participated. Plasma lipids, lipoprotein particle sizes, fatty acid composition in plasma and red blood cells (RBCs), plasma cytokines, antioxidant capacity, acylcarntines, carnitine, choline, betaine, and trimethylamine-N-oxide (TMAO) were measured before and after supplementation. Results: Plasma triacylglycerol (TAG) and large very-low density lipoprotein (VLDL) & chylomicron particle concentrations decreased after 28 days of krill oil intake. A significant reduction in the TAG/HDL cholesterol resulted. Krill oil supplementation decreased n-6/n-3 polyunsaturated fatty acids (PUFA) ratio both in plasma and RBCs. This was due to increased EPA, DHA and docosapentaenoic acid (DPA) and reduced amount of arachidonic acid (AA). The increase of n-3 fatty acids and wt % of EPA and DHA in RBC was of smaller magnitude than found in plasma. Krill oil intake increased the antioxidant capacity, double bond index (DBI) and the fatty acid anti-inflammatory index. The plasma atherogenicity index remained constant whereas the thrombogenicity index decreased. Plasma choline, betaine and the carnitine precursor, γ-butyrobetaine were increased after krill oil supplementation whereas the TMAO and carnitine concentrations remained unchanged. Conclusion: Krill oil consumption is considered health beneficial as it decreases cardiovascular disease risk parameters through effects on plasma TAGs, lipoprotein particles, fatty acid profile, redox status and possible inflammation. Noteworthy, no adverse effects on plasma levels of TMAO and carnitine were found

    Urine β-2-Microglobulin, Osteopontin, and Trefoil Factor 3 May Early Predict Acute Kidney Injury and Outcome after Cardiac Arrest

    No full text
    Purpose. Acute kidney injury (AKI) is a common complication after out-of-hospital cardiac arrest (OHCA), leading to increased mortality and challenging prognostication. Our aim was to examine if urine biomarkers could early predict postarrest AKI and patient outcome. Methods. A prospective observational study of resuscitated, comatose OHCA patients admitted to Oslo University Hospital in Norway. Urine samples were collected at admission and day three postarrest and analysed for β-2-microglobulin (β2M), osteopontin, and trefoil factor 3 (TFF3). Outcome variables were AKI within three days according to the Kidney Disease Improving Global Outcome criteria, in addition to six-month mortality and poor neurological outcome (PNO) (cerebral performance category 3–5). Results. Among 195 included patients (85% males, mean age 60 years), 88 (45%) developed AKI, 88 (45%) died, and 96 (49%) had PNO. In univariate analyses, increased urine β2M, osteopontin, and TFF3 levels sampled at admission and day three were independent risk factors for AKI, mortality, and PNO. Exceptions were that β2M measured at day three did not predict any of the outcomes, and TFF3 at admission did not predict AKI. In multivariate analyses, combining clinical parameters and biomarker levels, the area under the receiver operating characteristics curves (95% CI) were 0.729 (0.658–0.800), 0.797 (0.733–0.861), and 0.812 (CI 0.750–0.874) for AKI, mortality, and PNO, respectively. Conclusions. Urine levels of β2M, osteopontin, and TFF3 at admission and day three were associated with increased risk for AKI, mortality, and PNO in comatose OHCA patients. This trail is registered with NCT01239420

    Health-related quality of life after out-of-hospital cardiac arrest – a five-year follow-up study

    No full text
    Background Health-related quality of life (HRQoL) is affected after out-of-hospital cardiac arrest (OHCA), but data several years after the arrest are lacking. We assessed long-term HRQoL in OHCA survivors and how known outcome predictors impact HRQoL. Methods In adult OHCA survivors, HRQoL was assessed five years post arrest using Short-form 36 (SF-36), EQ-5D-3 L (EQ-5D) and Hospital Anxiety and Depression Scale (HADS) among others. Results were compared to the next of kins’ estimates and to a Norwegian reference population. Results Altogether 96 survivors were included mean 5.3 (range 3.6–7.2) years after OHCA. HRQoL compared well to the reference population, except for lower score for general health with 67.2 (95%CI (62.1; 72.3) vs. 72.9 (71.9; 74.0)), p = 0.03. Younger (≤58 years) vs. older survivors scored lower for general health with mean (SD) of 62.1 (27.5) vs. 73.0 (19.5), p = 0.03, vitality (55.2 (20.5) vs. 64.6 (17.3), p = 0.02, social functioning (75.3 (28.7) vs. 94.1 (13.5), p < 0.001 and mental component summary (49.0 (9.9) vs. 55.8 (6.7), p < 0.001. They scored higher for HADS-anxiety (4.8 (3.6 vs. 2.7 (2.5), p = 0.001, and had lower EQ-5D index (0.72 (0.34) vs. 0.84 (0.19), p = 0.04. Early vs. late awakeners had higher EQ-5D index (0.82 (0.23) vs. 0.71 (0.35), p = 0.04 and lower HADS-depression scores (2.5 (2.9) vs. 3.8 (2.3), p = 0.04. Next of kin estimated HRQoL similar to the survivors’ own estimates. Conclusions HRQoL five years after OHCA was good and mainly comparable to a matched reference population. Stratified analyses revealed impaired HRQoL among younger survivors and those awakening late, mainly for mental domains
    corecore