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Background & aims: Marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eico-
sapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower circulating levels of triacylglycerols
(TAGs), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) may reduce cholesterol levels.
Clinical studies on effects of these dietary or supplemental PUFAs on other blood fat fractions are few and

gey words: have shown conflicting results. This study aimed to determine effects of high-dose supplemental n-3
mega-3 PUFAs . . . . . . . .
Omega-6 PUFAs (EPA + DHA) and n-6 (LA) PUFAs from high-quality oils on circulating lipoprotein subfractions and
Lipoprotein subfractions standard lipids (primary outcomes), as well as apolipoproteins, fatty acids, and glycemic control (sec-
Blood lipids ondary outcomes), in females and males with abdominal obesity.

Apolipoproteins Methods: This was a randomized double-blind crossover study with two 7-wk intervention periods
Abdominal obesity separated by a 9-wk washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (TAG

fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/
d of LA. In fasting blood samples, we investigated lipoprotein particle subclasses by nuclear magnetic
resonance spectroscopy, as well as standard lipids, apolipoproteins, fatty acid profiles, and glucose and
insulin. Data were analyzed by linear mixed-effects modeling with ‘subjects’ as the random factor.
Results: The difference between interventions in relative change scores was among the lipoprotein
subfractions significant for total very-low-density lipoproteins (VLDLs) (n-3 vs. n-6: —38%* vs. +16%,
p < 0.001; *: significant within-treatment change score), large VLDLs (—58%* vs. —0.91%, p < 0.001),
small VLDLs (—57%* vs. +41%*, p < 0.001), total low-density lipoproteins (LDLs) (+5.8%* vs. —4.3%*,
p = 0.002), large LDLs (+23%* vs. —2.1%, p = 0.004), total high-density lipoproteins (HDLs) (—6.0%*
vs. +3.7%, p < 0.001), large HDLs (+11%* vs. —5.3%, p = 0.001), medium HDLs (—24%* vs. +6.2%,
p = 0.030), and small HDLs (—9.9%* vs. +9.6%*, p = 0.002), and among standard lipids for TAGs (—16%*
vs. —2.6%, p = 0.014), non-esterified fatty acids (—19%* vs. +5.5%, p = 0.033), and total cholesterol
(—0.28% vs. —4.4%*, p = 0.042). A differential response in relative change scores was also found for
apolipoprotein (apo)B (+0.40% vs. —6.0%*, p = 0.008), apoA-II (—6.0%* vs. +1.5%, p = 0.001), apoC-II
(—=11%* vs. —1.7%, p = 0.025), and apoE (+3.3% vs. —3.8%, p = 0.028).

Conclusions: High-dose supplementation of high-quality oils with n-3 (EPA + DHA) or n-6 (LA) PUFAs
was followed by reductions in primarily TAG- or cholesterol-related markers, respectively. The responses
after both interventions point to changes in the lipoprotein—lipid—apolipoprotein profile that have been
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associated with reduced cardiometabolic risk, also among people with TAG or LDL-C levels within the

normal range.

Registration: Registered under ClinicalTrials.gov Identifier: NCT02647333.
Clinical trial registration: Registered at https://clinicaltrials.gov/ct2/show/NCT02647333.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Abbreviations

AA arachidonic acid

ALA a-linolenic acid

ALAT alanine aminotransferase

ALP alkaline phosphatase

apo apolipoprotein

ASAT aspartate aminotransferase

B1 the first baseline visit/measurements before any
intervention

CK creatine kinase

CETP cholesteryl ester transfer protein

CVvD cardiovascular disease

DGLA dihomo-y-linolenic acid

DHA docosahexaenoic acid

DMBP Department of Medical Biochemistry and
Pharmacology at Haukeland University Hospital

DPA docosapentaenoic acid

EPA eicosapentaenoic acid

FAs fatty acids

FC free cholesterol

FFAs free fatty acids

GLA v-linolenic acid

GT v-glutamyl transpeptidase

E% energy percentage of total energy intake

HbA1lc glycated hemoglobin

HDLs high-density lipoprotein particles

HDL-C HDL cholesterol

HOMAZ2-IR homeostasis model assessment of insulin resistance

index 2

HOMA2-%B homeostasis model assessment of beta-cell
function index 2

HOMAZ2-%S homeostasis model assessment of insulin sensitivity

index 2
ICC intraclass correlation coefficient
IDLs intermediate-density lipoprotein particles
INCP insulin C-peptide
LA linoleic acid
LD lactate dehydrogenase
LDLs low-density lipoprotein particles
LDL-C LDL cholesterol
Lp(a) lipoprotein (a)
Lp-B apoB-containing lipoproteins
LpL lipoprotein lipase
NEFAs non-esterified fatty acids

non-HDL-C non-HDL cholesterol

n-3 omega-3

n-6 omega-6

PLs phospholipids

PUFAs polyunsaturated fatty acids

RBCMs red blood cell membranes
RCT randomized controlled trial
s% sympercent

TAGs triacylglycerols

TC total cholesterol

TRFAs trans fatty acids

TRLs TAG-rich lipoproteins
TRL-C TRL cholesterol

Tx treatment

VLDLs very-low-density lipoprotein particles
WC waist circumference

wt% weight percentage

95% BCa CI 95% bootstrapped (bias-corrected and accelerated)
confidence interval

1. Introduction

Circulating levels of LDL cholesterol (LDL-C) are associated with
risk of cardiovascular disease (CVD) [1,2], a leading cause of death
worldwide [3]. However, the majority of clinical events are not
prevented by substantial reductions in LDL-C levels alone [4,5].
Abnormalities in other components of the lipoprotein-lipid profile,
which are often associated with obesity, particularly abdominal
obesity [6], may partially account for the residual CVD risk [7,8].
Among these parameters are elevated blood levels of tri-
acylglycerols (TAGs) and TAG-rich lipoproteins (TRLs) or their
remnants [9]. Increasing CVD risk has been observed with
increasing TAG levels within the widely accepted ‘normal’ range
[10,11].

The concentrations of different lipoprotein subgroup particles,
which vary in density, size, and composition of lipids and proteins,
including apolipoproteins, have in recent years emerged as inde-
pendent predictors of CVD comparable to or stronger than standard

lipids [12—15]. Increased risk of CVD has been associated with
elevated levels of large and medium VLDLs [9,16], total LDLs
[12,16,17], and small, dense LDLs (sdLDLs) [16,18,19], as well as
lower concentrations of HDLs [16,20,21]. In particular, the level of
apolipoprotein (apo)B, a measure of the total number of athero-
genic lipoprotein particles [22], is independently associated with
CVD risk [23—25]. Moreover, apoB-containing lipoproteins (Lp-B)
enriched with apoC-III, a potent modulator of TAG metabolism and
cardiometabolic disease [26], are among the lipoprotein sub-
fractions that have been most strongly related to CVD risk [27,28].

The composition of dietary fats modulates the lipoprotein, lipid,
and apolipoprotein profiles [29—31]. Lower CVD risk has been
associated with higher intakes or blood levels of marine-derived
omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eico-
sapentaenoic acid (EPA) and docosahexaenoic acid (DHA) [32—35],
and with higher intakes or circulating levels of plant-derived
omega-6 (n-6) PUFAs, mainly linoleic acid (LA) [36—38]. This in-
verse relationship has been partially attributed to changes in blood
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fat fractions [37,39], primarily reduced TAG levels after n-3 intake
[29,40—43], and lower cholesterol levels after n-6 intake [30,31,44].
However, effects on CVD morbidity, mortality, and intermediate
outcomes, including lipids and lipoproteins, have not been
consistent across studies for n-3 [33,35,45—47], nor for n-6
[36,38,48—51], and it remains controversial whether dietary or
supplemental PUFAs reduce cardiometabolic risk [44,47,52].

It is well established that increasing intakes or biomarker levels
of marine n-3 PUFAs lower circulating concentrations of TAGs in a
dose-dependent manner [29,40—42,53—59]. The effects have been
less consistent for changes in other standard lipids and in lipo-
protein profiles [54,59]. Notably, few clinical studies have investi-
gated the effects of n-6 PUFAs alone on blood fat fractions [44,50],
and existing evidence shows conflicting results [44,50,60—62].
How increased n-6 intakes affect lipoprotein and apolipoprotein
profiles is particularly poorly documented. Among nine RCTs esti-
mating effects of marine n-3 PUFAs on all the major lipoprotein
subfractions [63—71], four of them specified a vegetable oil typi-
cally rich in LA as the comparator [64,66—68]. Only one of these
published the fatty acid composition of the n-3 and n-6 oils [64],
making it difficult to interpret results across studies. None reported
any quality parameters, such as the content of oxidation products,
which may interfere with treatment effects [72]. In the present
study, we investigated effects of high-dose supplemental n-3
(3—4 g/d of EPA + DHA) and n-6 PUFAs (15—20 g/d of LA) from well-
characterized (detailed fatty acid profile), high-quality (low
oxidation) oils on fasting blood levels of lipoprotein subclass par-
ticles, standard lipids, and apolipoproteins, as well as on other CVD
risk factors, in sedentary females and males with abdominal
obesity. This is the first crossover trial comparing the effects of n-3
and n-6 PUFAs on all the major lipoprotein subfractions and related
lipids and apolipoproteins in this population of high CVD and dia-
betes risk.

2. Materials and methods
2.1. Participants

People with abdominal obesity (waist circumference (WC) of
>80 cm in females and >94 cm in males) and 30—70 years of age,
sedentary (<2 h/wk of exercise at moderate to high intensity) but
otherwise healthy, were recruited among respondents to news-
paper advertisements and screened for eligibility from April to June
2015. The sex-specific cut-off points of WC were chosen according
to the recommended thresholds for abdominal obesity reflecting
high risk for CVD and diabetes, which are set at 80 cm and 94 cm in
Caucasian females and males, respectively [73—75]. Excluded were
individuals with diagnosed diabetes, severe psychiatric illness, or
malabsorption disorders, together with those on regular medica-
tion that could influence study outcomes, including lipid-lowering
and anti-hypertensive drugs, anticoagulants, antidepressants, and
thyroid hormones. Regular use of other medications was also not
permitted, but antibiotics, NSAIDs, antihistamines, diuretics, and
hormone replacement therapy were accepted during the study if
prescribed by a physician. Dietary supplements, including supple-
mental PUFAs other than the study products, were not allowed and
had to be discontinued at least three months before the first
baseline visit, except prescribed iron, calcium, and vitamin D in case
of medical reasons. (Changes in prescribed medication and sup-
plementation during the study are reported in the online
Supporting Information, Supplemental Text, Results.) Other exclu-
sion criteria were fasting serum levels of TAGs >5 mmol/L, cigarette
smoking, alcohol or drug abuse, previous coronary interventions,
previous bariatric surgery, pregnancy or lactation, blood donation
within three months before baseline, scheduled hospitalization
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during the study, and pacemaker or implantable cardioverter
defibrillator (ICD).

The study was conducted according to the guidelines in the
Declaration of Helsinki, and the study protocol was reviewed and
approved by the Regional Committee for Medical and Health
Research Ethics (2014/2336/REK South-East). Study design, sample
collection, and potential risks and benefits were carefully explained
to each participant before they provided written informed consent.

2.2. Study design

This was a randomized double-blind two-period crossover
study conducted at Haukeland University Hospital in Bergen, Nor-
way, during a period of total 30 wk from May 2015 to March 2016.
After a run-in period for 15 wk (from May/June 2015) without any
dietary supplements, eligible participants were randomly assigned
to one of two treatment sequences: supplementation with n-3 fatty
acids (fish oil) in period one, followed by supplementation with n-6
fatty acids (safflower oil) in period two (sequence AB), or n-6
supplementation in period one, followed by n-3 supplementation
in period two (sequence BA). Both intervention periods lasted for
7 wk and were separated by a 9-wk washout phase. The duration of
the intervention periods was similar to that used in previous
crossover trials (duration of 6 wk) measuring all major lipoprotein
subfractions after PUFA interventions [66,70]. However, to reduce
the risk of potential carryover effects, we included a longer washout
phase than in these studies (duration of 2 wk or no washout) and
the majority of other previous PUFA intervention trials with a
crossover design (2—8 wk of washout) [76]. Clinical measurements
and tissue sampling were conducted one day before treatment
period one started (baseline visit 1, B1; September 2015), the day
after 7 wk of the first intervention (follow-up visit 1, I1; November
2015), before treatment period two started (baseline visit 2, B2;
January 2016), and after the second intervention (follow-up visit 2,
12; March 2016). Further details about the study design are pre-
sented in Fig. 1.

A 2 x 2 crossover design was chosen for this study because
participants then act as their own matched control and thus allows
treatment comparisons at the individual level, consequently
reducing the influence of confounding covariates, yielding more
efficient treatment comparisons, and requiring a smaller sample
size. We did not expect a large dropout rate, and we believed that
the 9-wk washout phase was sufficient to avoid that the effects of
the first intervention persisted into the second period (carryover
effect), which are some of the known challenges of a crossover
design.

2.3. Randomization

Participants were at baseline allocated to the two different se-
quences of interventions by stratified randomization using sex as a
stratum. An online software (Random Sequence Generator, www.
random.org) was used to generate the true random number allo-
cation sequence for each sex separately to ensure equal numbers of
females across periods in each sequence, and the same for males.
The randomization procedure was conducted by two external re-
searchers who were otherwise not connected to the study. The
randomization code was concealed from the study investigators
until the statistical analyses were completed for all primary and
most secondary outcomes.

2.4. Interventions

Both supplements were produced and sponsored by Pharma-
tech AS (Rolvsgy, Norway). The PUFAs were delivered in a liquid
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Fig. 1. Overview of the study. This was a randomized double-blind crossover study with two intervention periods of 7 wk separated by a 9-wk washout phase. Subjects were
randomly assigned to intervention sequence AB or BA (A: n-3 intervention; B: n-6 intervention).

suspension consisting mainly of silicon dioxide and small amounts
of mono- and diglycerides of fatty acids (magnesium stearates), and
without water to reduce the rate of oxidation. The proportion of oil
in this suspension was about 90%. No vitamins were added to the
products.

The n-3 supplement was a hydrolyzed and re-esterified fish oil
(TAG form) containing mainly EPA (C20:5n-3) and DHA (C22:6n-3),
while the n-6 supplement was an organic, cold-pressed safflower
oil containing mainly LA (C18:2n-6). Based on analyzed PUFA levels
in these supplementation products, females should consume 5.6
mL/5.0 g (1.8 g EPA and 1.2 g DHA) and males 7.5 mL/6.7 g (2.4 g EPA
and 1.6 g DHA) fish oil each day during the n-3 period to obtain a
total dose with EPA + DHA of 3 and 4 g/d, respectively. In the n-6
period, the daily dose of safflower oil was for females 24.5 mL/
22.6 g (15 g LA) and for males 32.7 mL/30.1 g (20 g LA). Different
amounts of oils among females and males (a ratio of 3:4) allowed
for similar intakes of EPA + DHA or LA per kg body weight or fat-
free mass.

A supplemental dose of 3—4 g EPA + DHA was chosen based on
previous studies showing that the effect on circulating levels of
TAGs (the primary outcome used in the sample size analysis) is
dose dependent [57,77] with a minimal effective dose of at least
2—4 g/d to significantly reduce (fasting) TAG levels among normo-
to moderately hypertriacylglycerolemic individuals [41,43,78]. This
daily dose was in accordance with scientific opinions from, e.g., the
European Food Safety Authority [79] and the American Heart As-
sociation [10]. A fish oil in TAG form was used because of higher
bioavailability than the ethyl ester form and less susceptibility to
peroxidation than the free fatty acid (FFA) form [80].

The rationale for choosing a daily dose of 15—20 g LA was the
intention to increase the total consumption of n-6 PUFAs (mainly
LA) from a typically low dietary intake in Norway (~3.5 E%) [81] to a
level in the upper range of the recommended intake of 5—10 E%
[82,83], as well as observational data showing that the levels of
dietary LA intake or circulating/tissue LA biomarkers are inversely
associated with CVD risk in a dose—response manner [36,38].
Notably, we chose a supplemental approach to enable a double-
blind design and because the therapeutic doses would be impos-
sible to achieve by a dietary approach without significantly
changing other dietary determinants not of interest in this study.

The total amount of supplement was divided into two daily
dosages, one in the morning and one in the afternoon with meals,
and the participants were instructed to take the supplement (using
a syringe with dose marked) in each period from the morning after
the baseline visit to the evening before the follow-up visit. A liquid
form was selected instead of capsules as the amount of n-6 PUFAs
implied many capsules daily, which could be challenging to swal-
low for many participants and thus influence their compliance with
the intervention. Notably, the energy content in 5.0 and 6.7 g of fish
oil is about 45 and 60 kcal, respectively, while 22.6 and 30.1 g of
safflower oil provide 203 and 271 kcal extra. If the supplements,
especially the n-6 oil, did not lead to a reduced intake of other in-
gredients in the diet, as we expected to happen, this would cause a
theoretical difference in energy intake between the two interven-
tion periods of 158 kcal and 211 kcal for females and males,
respectively.

2.5. Composition and quality of supplements

The fatty acid (FA) compositions of the oils were analyzed by the
Lipid Research Group at the University of Bergen (Supplemental
Table 1), and these values were used in the calculations of PUFA
intakes and in all reported analyses. To analyze the FA profiles in the
supplements, 40—60 g of oil dissolved in chloroform-methanol
(1:1) was dosed into a glass vial with a Teflon-lined seal cap.
Organic solvents were evaporated to dryness under a stream of
nitrogen, and FA methyl esters were prepared and analyzed by
gas—liquid chromatography as previously described [84]. We
measured the relative content of total n-3 PUFAs in the fish oil to be
71.1 percentage by weight of the total fatty acid (TFA) content (g FA/
100 g TFA; wt%), of which 62.1 wt% was EPA and DHA (38.6 wt% and
23.5 wt%, respectively; DHA/EPA ratio: 0.6). The content of LA was
1.1 wt%. The safflower oil contained 66.8 wt% of total n-6 PUFAs,
which was almost exclusively LA (66.7 wt%), and 0.3 wt%
EPA + DHA. The relative content of measured trans fatty acids
(TRFAs) was 0.07 wt% and 0.05 wt% in the fish and safflower oils,
respectively.

Analyses of primary and secondary oxidation products and FFAs,
as well as acid values, were performed by Multilab @stfold AS
(Rolvsay, Norway) just before the first intervention period started
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in September 2015 (Supplemental Table 2). These analyses indi-
cated high-quality products at delivery. Participants were instruc-
ted to store the bottles with oil supplements at 4 °Cin dark (i.e., the
refrigerator) during the entire intervention periods to reduce the
rate of lipid oxidation.

2.6. Blinding

The trial was blinded for the participants and the study in-
vestigators by equal appearance of the study products and the
bottles containing these oils. Their contents were only identifiable
by a randomly chosen ID on the bottles. To enable a double-blind
design with the selected oils in a liquid form, the supplements
were supplied in similar, dark bottles of polyethylene terephthalate.
The taste was modified by adding 1.8% of a natural citrus aroma and
0.045% of steviol glycosides (E 960). Equal appearance was
accomplished by using 0.85% calcium carbonate (E 170) and 0.2%
turmeric (E100).

The participants received no information about which oil was
given in which dosage or whether different dosages were tested for
both supplements. The two external researchers who conducted
the randomization, also packed the bottles with supplements,
along with the necessary equipment and detailed instructions, in
sealed bags marked with a three-digit code used only for this
purpose to identify the participants. The bags were handed out to
the participants after the measurements at B1 and B2. After study
completion, we evaluated the blinding by asking the participants to
guess which oil they had received in each period, and how confi-
dent they were about their assumptions on a four-response Likert
item (a statement that the respondent is asked to evaluate in a
survey): 0% (no clue), 25% (unsure), 75% (fairly sure), and 100%
(totally sure).

2.7. Compliance and adverse effects

In a questionnaire, the participants were asked after two and
7 wk of intervention to rate their adherence to the correct dose of
oil on a Likert item with five responses: 0% (never), 25% (occa-
sionally), 50% (often), 75% (usually), and 100% (always). They also
assessed their adherence to the timing of doses using the same
Likert item. Good compliance was defined as taking at least 80% of
the allocated supplements according to the instructions on both the
amount of oil and timing of doses. These criteria were evaluated
separately.

For each participant, we calculated the amount of oil (in ml)
used during the 7-wk intervention period, i.e., the total amount of
oil delivered at baseline minus leftover at follow-up measured by
the participants (using a syringe with marked ml). To obtain a more
objective measure of compliance than self-reported data on oil
intakes [85], we measured the fasting levels of the supplemented
PUFAs in red blood cell membranes (RBCMs) before and after the
interventions.

In wk two and seven of each period, the participants completed
a questionnaire including 20 potential adverse effects, such as
bloating, constipation, diarrhea, dizziness, headache, heartburn,
joint/muscle pain, nausea, palpitation, skin rash/itching, and
stomach ache. The severity of each of these symptoms was assessed
on a five-response Likert item: none, mild, moderate, severe, and
very severe.

2.8. Dietary intake and physical activity
The participants were instructed to maintain their usual life-

style, dietary habits, and physical activity level during the study.
The habitual intake of foods and beverages was obtained by dietary
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recordings two times in the run-in period (baseline) and one time
during both intervention periods (in wk five). Each recording was
carried out for a period of seven consecutive days, from Monday to
Sunday. The collection of dietary data was done by a self-developed
application tailored to the project that allowed the electronic
recording of all diet data via the iPhone, iPad, and iPod. The
application was designed by the database program FileMaker Pro
12 Advanced (FileMaker, Inc., Santa Clara, CA, USA) and imple-
mented in the app FileMaker Go 13. Beforehand, the participants
were given detailed instructions on how to use the application and
carry out the dietary recording, and they received practical assis-
tance as needed.

The participants were questioned about their physical activity
level at each baseline and follow-up visit using eight Likert re-
sponses for frequency (days per wk; score 0 to 7); five Likert re-
sponses for duration (<20 min, 20—30 min, 30—60 min, 1-2 h, or
>2 h; score 1 to 5); and three Likert responses for intensity (low,
medium, or high; score 1, 2 or 4, respectively). The physical activity
level at work was a binominal Likert item (active or not; score 0 or
3). A total score for physical activity level was calculated from these
responses, and the data were handled as Likert scale data and
treated as interval data because of many possible numerical out-
comes (range: 0—143). Notably, the tools to measure dietary intake
and physical activity level were not validated before the study.

2.9. Study visits

Prior to each study visit, participants were instructed to fast for
at least 10—12 h and avoid alcohol for at least 48 h. Besides, they
were asked to not exercise the day before, as this may also affect
circulating levels of lipids and lipoproteins [8G]. In the morning
between 07:30 and 11:30 a.m., venous blood samples were
collected, and anthropometric variables were measured. The par-
ticipants were also questioned about fasting status, alcohol intake,
physical activity, stress level, use of medications and supplements,
any health conditions, and compliance with the intervention since
the last visit.

2.10. Anthropometrics

Body weight, height, and waist and hip circumferences were
measured by standardized procedures, and body composition, i.e.,
body fat mass, body fat percent, visceral fat area, and fat-free mass,
was further analyzed by using a bioelectrical impedance mea-
surement system (InBody S10; InBody Co, Ltd., Seoul, South Korea)
in a lying posture. The means of two measurements were
calculated.

2.11. Biochemical variables

2.11.1. Fatty acid profiles in RBCMs

All blood samples were aliquoted and stored at —80 °C until the
end of the study, when samples from all visits were analyzed at the
same time. Fasting levels of 47 fatty acids (FAs) in RBCMs were
measured by gas—liquid chromatography using the internal stan-
dard C21:0 as previously described [84]. The RBCMs were prepared
from whole blood samples collected in EDTA-vacutainer tubes and
frozen immediately at —80 °C. 1 mL of defrosted blood was
centrifuged at 20,000 g in 30 min at 4 °C. Around 300 pl of the
upper layer containing plasma and cytoplasm of lysed red blood
cells were then removed. To wash the RBCMs and enhance lysing of
remaining red blood cells, the lower layer was suspended in
deionized water, shaken with a metal bead in a TissueLyser (Qia-
gen) at 25 Hz for 2 min, and incubated at ice for 10 min before
centrifugation at 20,000g in 30 min at 4 °C. Washing and
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centrifugation of the sediment were repeated two times, but
without adding the metal bead. After the final removal of the su-
pernatant, the pellet containing RBCMs was reconstituted in
deionized water and immediately stored at —80 °C until analysis.
The FA profile of RBCMs prepared by this method was comparable
to the FA profile of RBCMs isolated from fresh blood samples using a
procedure previously reported [87]. In the FA analyses, we used
20 pl of an aliquot of RBCMs, corresponding to 160 pl of blood, for
the preparation of FA methyl esters of total lipids (ug FAs/ml blood).
The total levels of analyzed n-3 and n-6 PUFAs are reported as the
n-6/n-3 ratio, while the n-3 index was calculated as the sum of EPA
and DHA in RBCMs and expressed as wt%. We also report the levels
of other RBCM FAs measured as wt% to eliminate differences in
RBCM amounts, which may vary between individual blood sam-
pling, even in the same person. However, since there is no agree-
ment on the choice of FA measure (absolute vs. relative) [85,88,89],
data on the concentrations (ng/mL) of RBCM FAs are reported in the
Supporting Information.

2.11.2. Lipoprotein particle subclasses

EDTA-plasma samples were shipped frozen on dry ice in June
2016 to LipoScience (now LabCorp, Inc., Raleigh, NC, US) for ana-
lyses, which were conducted within a month. Concentrations and
sizes of lipoprotein particle subclasses, and a lipoprotein-based
insulin resistance index (LP-IR), were determined by an auto-
mated nuclear magnetic resonance (NMR) spectroscopy assay ac-
cording to the LipoProfile-3 algorithm [90,91]. Briefly, lipoprotein
subclass particle concentrations (nmol/L for VLDLs, IDLs, and LDLs;
umol/L for HDLs) were calculated from the measured amplitudes of
their spectroscopically distinct lipid methyl group NMR signals, and
the mean VLDL, LDL, and HDL particle sizes (nm diameter) were
obtained from a weighted average of each subclass diameter
multiplied by its relative mass percentage derived from the NMR
signal intensity. The following nine subfractions were measured by
NMR (estimated ranges of particle diameter): large VLDLs
(including chylomicrons if present; >60 nm), medium-sized (me-
dium) VLDLs (42—60 nm), small VLDLs (29—42 nm), IDLs
(23—29 nm), large LDLs (20.5—23.0 nm), small LDLs (18—20.5 nm),
large HDLs (9.4—14 nm), medium HDLs (8.2—9.4 nm), and small
HDLs (7.3—8.2 nm). Total VLDL and HDL particle concentrations
were calculated as the sum of small, medium, and large subclass
particle concentrations, and total LDL particle concentration is the
sum of small LDL, large LDL, and IDL concentrations.

2.11.3. Lipids

We measured fasting serum TAGs, total cholesterol (TC), LDL-C,
and HDL cholesterol (HDL-C) at the Department of Medical
Biochemistry and Pharmacology (DMBP), Haukeland University
Hospital, according to standardized procedures. Serum phospho-
lipids (PLs), free cholesterol (FC), and non-esterified fatty acids
(NEFAs) were analyzed on a Hitachi 917 Chemistry Analyzer
(Boehringer Mannheim GmbH, Mannheim, Germany) using Kits
from DiaSys Diagnostic Systems GmbH (Holzheim, Germany). Non-
HDL cholesterol (non-HDL-C) was calculated by subtracting HDL-C
from TC, while TAG-rich lipoprotein cholesterol (TRL-C) was
derived as non-HDL-C minus LDL-C.

2.11.4. Lipoprotein (a) and apolipoproteins

Serum concentrations of lipoprotein (a) [Lp(a)] and the apoli-
poproteins apoB and apoA-I were analyzed at DMBP. Serum levels
of apoA-Il, apoC-II, apoC-IIl, and apoE were measured using the
MILLIPLEX MAP Human Apolipoprotein Magnetic Bead Panel —
Cardiovascular Disease Multiplex Assay (APOMAG-62K; Merck
Millipore, Billerica, MA, US) and detected by the Bio-Plex 200
System (Bio-Rad, Hercules, CA, US).
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2.11.5. Indices of glycemic control and insulin sensitivity

Fasting serum glucose, insulin, and insulin C-peptide (INCP), as
well as glycated hemoglobin (HbAlc) in whole blood, were
analyzed at DMBP. The homeostasis model assessment (HOMA) is
reported as an index of insulin sensitivity, and we used the HOMA2
calculator developed by the University of Oxford (http://www.dtu.
ox.ac.uk/homacalculator/index.php) to estimate insulin resistance
(homeostasis model assessment of insulin resistance index 2,
HOMAZ2-IR), insulin sensitivity (HOMA2-%S), and beta-cell function
(HOMA2-%B) based on the updated computerized model [92].
Fasting serum levels of glucose and INCP were used as input in
these calculations. Another measure of insulin sensitivity, LP-IR,
ranging from O (least) to 100 (most) insulin resistant, was calcu-
lated by LipoScience as a weighted combination of lipoprotein
subclass and size parameters (large VLDLs, small LDLs, large HDLs,
and VLDL, LDL, and HDL sizes) most closely associated with HOMA-
IR [93].

2.11.6. Other biomarkers

Alanine aminotransferase (ALAT), albumin, alkaline phospha-
tase (ALP), aspartate aminotransferase (ASAT), bile, bilirubin, cre-
atine kinase (CK), y-glutamyl transpeptidase (GT), lactate
dehydrogenase (LD), estrogen (17p-estradiol), and testosterone
were analyzed at DMBP. Serum 25-OH vitamin D3 was analyzed by
liquid chromatography-tandem mass spectrometry at BEVITAL,
Bergen (www.bevital.no).

2.12. Statistical analyses

The primary outcomes reported in this study are between-
treatment differences for relative change scores (primary anal-
ysis) in fasting blood levels of NMR-measured lipoprotein subclass
concentrations and sizes, blood lipids (TAGs, NEFAs, TC, LDL-C, and
HDL-C), cholesterol levels calculated from these measures (non-
HDL-C and TRL-C), and ratios between these variables. Related to
the primary outcomes we also report changes in fasting serum
levels of Lp(a), PLs, and FC. The results presented here are based on
an intention-to-treat (ITT) analysis including all randomized par-
ticipants (n = 39).

The sample size was initially derived from a calculation using a
minimal expected between-treatment difference in one of the
primary outcomes (TAGs) based on results from previous PUFA
intervention trials [29,55,58,66,70]. With a power of 90%, a two-
tailed nominal alpha level of 0.05, and an SD of 0.5, at least 33
subjects should be included to detect a minimal between-
treatment difference in TAG levels of 0.4 mmol/L, corresponding
to a relative difference of 15—25% in normo-to mildly hyper-
triacylglycerolemic individuals. We intended to include 40 partic-
ipants to take into account a potential dropout rate of 15%.
However, this sample size calculation was based on the difference
between two independent means and the between-subject SD.
Hence, it did not account for the crossover design by using an ex-
pected within-subject SD from paired measurements. A retro-
spective sample size analysis considering the AB/BA design and
paired nature of the data estimated that at least 20 subjects should
be included to detect a minimal between-treatment difference in
relative TAG levels of 15% with a power of 90%, a two-tailed nominal
alpha level of 0.05, and a within-subject SD of 21% [94].

Data are presented as raw unadjusted means (SDs), geometric
means (1 SD ranges), or mean score differences (+absolute/relative
effect estimates [95% Cls]) as specified elsewhere. The geometric SD
ranges used in descriptive statistics were calculated by dividing and
multiplying the geometric means with the geometric SD factors to
obtain the lower and upper limits, respectively [95]. The distribu-
tion of data points from different measurements are shown by
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violin and error bar plots in Supplemental Figs. 1—4. All inferential
tests were two-tailed with a nominal alpha level of 0.05.

The statistical analyses were conducted with R v3.6.1 (https://
www.r-project.org), and data transformation and exploration
were done by using the tidyverse packages (https://tidyverse.
tidyverse.org). To assess if the blinding of participants was suc-
cessful, we used the chisq.test function in the stats package v3.6.1 to
conduct a Pearson's chi-squared test. To explore relationships be-
tween different variables, we conducted bivariate and partial
Pearson's correlation analyses by using the pcor.test function in the
RVAideMemoire package v0.9—73, and in these analyses, we ob-
tained 95% Cls from a bootstrapping procedure (bias-corrected and
accelerated, BCa) using 2000 replicates. Linear regression modeling
was done with the Im function in the stats package. All plots were
made by the ggplot2 package v3.3.0 and several of its extensions,
e.g., the ggupset package v0.3.0. The TwoSampleCrossOver.NIS
function in the TrialSize package v1.4 was used to conduct the
retrospective sample size analysis.

2.12.1. Primary analysis

Study outcomes were analyzed by linear mixed-effects models
(LMEMs) with ‘subjects’ as the random factor. The mixed modeling
was performed with the Ime function in the nlme package v3.1-140.
In the primary analysis, we used a design-driven approach with
pre-defined fixed effects (‘treatment’, ‘time’, ‘sex’, ‘period’,
‘treatment x time’, ‘treatment x sex’), random effects (random
intercepts and slopes for ‘time’), and correlation structure (general
unstructured) in the primary period-adjusted mixed model. Sex
was used as a stratum in the randomization of the participants and
should, therefore, be included in the model to give valid inference
[96]. In case of heterogeneity, the model included a variance
structure allowing for different variances per stratum of ‘treatment’
and/or ‘time’. The correlation structure was simplified to com-
pound symmetry if the model did not converge.

Results within and between periods were analyzed by extending
the fixed effects structure with the three-way interaction
‘treatment x period x time’ and its daughter terms, and by
including random slopes for ‘period’ in the random part of the
model (the maximal mixed model). The categorical main terms in
the models (‘treatment’, ‘period’, ‘time’, and ‘sex’) were defined by
orthogonal sum coding in planned comparisons showing absolute
or relative within- and between-treatment differences from base-
line to follow-up (change scores). In the between-treatment com-
parisons, the n-6 intervention was defined as the reference group if
not otherwise specified (i.e., n-3 vs. n-6).

As most biological variables fit a log-normal (multiplicative)
distribution equally well or better than a normal (additive) distri-
bution [95], which was also the case for most outcome variables in
the present study, we transformed by natural logarithm the values
before the analyses of responses in relative terms. Relative within-
treatment changes from baseline to follow-up and between-
treatment differences are reported in the main text and tables as
percentages calculated from the regression coefficients (i.e., the
average of log-ratios) by the formula 100 x (exp®tma® _1), In the
figures, however, we show results in relative terms as sympercents
(s%), which are additive and symmetric percentage differences on
the 100 loge scale [97]. This relative measure is calculated as the
difference between the natural logs of two numbers multiplied
by 100, i.e.,100 x In(a) — 100 x In(b), making it straightfor-
ward to present and interpret without back transformation. This
approach is useful when analyzing positive valued continuous
outcome data, which are often positively skewed, and it avoids the
problems of asymmetry and non-additivity when using the con-
ventional percentage difference. The sympercent may be different
from the percentage derived from the average of log-ratios,
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which is calculated from the sympercent by using the formula
100 x (exp'®*199) _ 1), Notably, relative changes shown as sym-
percents in graphical presentations depict the exact same pattern
as to when illustrated by, e.g., log2 fold changes.

As part of the model validation procedure, the Shapiro—Wilk
test for normality, the D'Agostino test for skewness, and graphical
tools (boxplots, quantile—quantile plots, histograms) were used to
assess the distribution of standardized residuals. In cases of clear
non-normality or extreme skewness, we conducted separate ana-
lyses with rank transformed values and report p-values if the
nominal significance differed from the primary analyses of log-
transformed values. See the Supporting Information (Supple-
mental Text, Materials and Methods) for further details about the
mixed modeling and model validation procedure.

2.12.2. Secondary analyses

Although we did not expect carryover effects after the 9-wk
washout phase, we could not rule out this possibility. Because of
this, we conducted a secondary analysis of between-treatment
differences in follow-up scores adjusted for pre-treatment values
from B1 and the main effect of ‘period’ by an ANCOVA mixed model
including appropriate fixed terms (‘treatment’, ‘sex’, ‘period’, and
‘B1’) and random effects (random intercepts only). In this model,
we controlled for B1 only since potential carryover effects would
affect most the baseline measurements after the washout period.

In separate models, we also adjusted for specific period level
factors (covariates that can differ during the trial) one by one. Total
energy intake and BMI were included due to different amounts of
oils between the interventions. The sex hormones estrogen and
testosterone were measured and controlled for because these ste-
roids are known to affect the metabolism of n-3 and n-6 PUFAs [98],
and these hormone levels may differ across periods. Vitamin D3
was also adjusted for due to possible effects on blood lipids, such as
LDL-C [99], and its often varying tissue concentrations between the
seasons. A fully adjusted model included all of these covariates
along with the main term ‘period’. All continuous covariates were
centered around the mean.

2.12.3. Adjustment for multiplicity

Raw p-values were adjusted for multiple testing by controlling
the false discovery rate with the Benjamini and Hochberg method
when all primary and secondary variables reported in the current
study were analyzed at the same time. The distribution of raw p-
values from this joint analysis was used to determine the critical
value (g-value). However, adjusted p-values should be interpreted
with caution because a general adjustment method for mixed
modeling of repeated measurements has not yet been developed
due to difficulties associated with the correlation structure, which
has to be taken into account [100].

2.12.4. Within-subject variability and correlation

To help with the planning of future crossover studies [101], we
also report within-subject SDs and Pearson's rs for correlations
between follow-up scores in the two intervention periods. The
within-subject SD was obtained from the LMEM output as the re-
sidual SD (sigma).

3. Results
3.1. Study participants

A total of 232 females and males were pre-screened for partic-
ipation in the study, of which 69 attended the screening visit, 56

met the inclusion criteria, and 40 accepted the invitation to
participate (Fig. 2). In total, 38 participants completed the study,
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Recruitment by phone (n = 232)

Excluded (n = 163)
Not meeting inclusion criteria (n = 158)
Declined to participate (n=5)

Attended screening visit (n=69)

Excluded (n = 30)
Not meeting inclusion criteria (n = 13)
Declined to participate (n = 17)

Randomized to sequence (n = 39)

v

Allocated to sequence AB
Omega-3 treatment
Received intervention (n = 20)
Did not receive intervention (n = 0)

|

v

Lost to follow-up (n = 1)
Adverse event after oil intake

|

v

Period 1

Allocated to sequence BA
Omega-6 treatment
Received intervention (n = 19)
Did not receive intervention (n = 0)

v

Lost to follow-up (n = 0)

v

.

Washout period (no oil intake)

v

Allocated to sequence AB
Omega-6 treatment
Received intervention (n = 19)
Did not receive intervention (n = 0)

|

v

Lost to follow-up (n = 0)

|

v

Period 2

v

Allocated to sequence BA
Omega-3 treatment
Received intervention (n = 19)
Did not receive intervention (n = 0)

v

Lost to follow-up (n = 0)

'

Completed the study (n = 38)

ITT analysis (n =39)

Fig. 2. Flow diagram of the study participants. The diagram shows the numbers of participants screened, included, allocated to sequences, and analyzed in the present study
(CONSORT 2019 format [101]). 40 accepted the invitation to participate in the study, but one male dropped out for personal reasons before the first baseline visit and randomization.
Another male, assigned to sequence AB, was lost to follow-up after one month in the first period due to adverse events of nausea after intake of the n-3 oil.

while the 39 randomized individuals, 16 females and 23 males,
were included in the final intention-to-treat analysis.

The study participants were at baseline middle-aged (56 [SD
9.3] years) and had abdominal obesity (BMI: 28.5 [4.5] in females,
29.8 [3.8] in males; WC: 100 [11.2] cm in females, 107 [8.7] cm in
males), and they were normolipidemic (n = 7; all males) or
hyperlipidemic (n = 32) (Fig. 3), according to the American College
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of Cardiology/American Heart Association guidelines [10,102]. Pre-
treatment clinical characteristics of the subjects randomly assigned
to intervention sequence AB or BA (A: n-3; B: n-6) are shown by
sequence and period in Table 1 (geometric means for biochemical
variables) and Supplemental Table 3 (arithmetic means for
biochemical variables). All participants had at B1 an n-3 index in
RBCMs higher than 4 wt%. According to proposed n-3 index risk
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= 39)

Number of participants (n

0

TAGs 21.7 mmol/L
TC 25.2 mmol/L
LDLC 23.4 mmol/L

n3index <8.0 wt% [ J

:
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I

!

Groupings of baseline characteristics ordered by frequency

Fig. 3. Lipid levels at baseline. The upset plot shows the co-occurrence of hyperlipidemic traits at baseline. The circulating lipid levels for borderline high hyperlipidemic individuals
are according to the American College of Cardiology/American Heart Association guidelines [10,102]. Abbreviations: LDLC, LDL cholesterol; n3index, n-3 index (weight percent of
EPA and DHA in red blood cell membranes); TAGs, triacylglycerols; TC, total cholesterol. (For interpretation of the references to color in this figure legend, the reader is referred to

the Web version of this article.)

zones [103], 15 and 24 participants were at intermediate (4—8 wt%)
and low (>8 wt%) risk, respectively. In our sample, the relatively
high pre-treatment n-3 indexes did not correlate significantly
(Pearson's r [95% BCa CI]: —0.026 [—0.35, 0.30], p = 0.877) with the
TAG levels at B1, of which we measured <1.13 mmol/L in 17 par-
ticipants, >1.7 mmol/L in 11 participants, and >2.3 mmol/L in 3
participants. Of note, the mean B1 level of LA in RBCMs was similar
to the wt% of EPA + DHA and lower compared to circulating levels
of LA measured as wt% in erythrocyte phospholipids in seven
prospective observational studies [38]. Thus, our sample was
characterized by a relatively high EPA + DHA/LA ratio in blood.

3.2. 0Oil intake, compliance, and blinding

Based on the fatty acid compositions of the oils (Supplemental
Table 1) and the self-reported data on oil intakes (Supplemental
Table 4), we calculated that the average intake of EPA and DHA
per 100 kg body weight was 4.63 (SD 1.14) g/d in females and 4.21
(0.91) g/d in males (females vs. males [95% CI]: 0.40 [-0.08 to 0.87],
p = 0.279; from linear regression). During the n-6 period, the
average intake of LAwas 17.2 (3.46) g/d in females and 18.4 (3.06) g/
d in males when normalized to 100 kg body weight (females vs.
males [95% CI]: —1.24 g/d [—2.77, 2.82], p = 0.282). The participants
reported overall good compliance (>80%) throughout both periods
(Supplemental Table 4), and none of them were excluded from the
final analysis due to low adherence. Responses to the questionnaire
that asked which intervention the participants assumed that they
were given in each period indicated successful blinding (Pearson's
chi-squared test: x* = 1.31, p = 0.253) (Supplemental Table 5).

3.3. Dietary intake and physical activity level

The changes from baseline in total dietary and supplemental
energy intake differed significantly between the interventions (n-3
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vs. n-6 [95% CI]: —163 kcal [-287, —38.6], p = 0.011) (Table 2),
which is explained by a higher caloric intake from the supple-
mental n-6 oil and lack of a similar compensatory decrease in di-
etary energy intake. The energy percentage (E%) of fat also
increased significantly with the n-6 supplementation, and a con-
current decrease in protein intake was recorded. The changes in
these nutrients were significantly less during the n-3 intervention.
Notably, the intakes of MUFAs, SFAs, and trans fatty acids did not
change significantly with any treatment. Besides, we found no
significant differences in the recorded intakes of total energy and
macronutrients (E%) between the two baseline measurements
during the run-in period, and dietary intakes of energy and mac-
ronutrients did not change significantly from baseline to follow-up
visits (data not shown).

During n-6 supplementation, the total intake of PUFAs increased
from a recorded baseline level of 5.95 E% (lower limit of the rec-
ommended intake) to 11.0 E% (upper limit of the recommended
intake), while the total intake of n-6 PUFAs increased almost two-
fold (from 3.60 E% at baseline to 9.35 E% at follow-up), as did the
total intake of n-3 PUFAs with n-3 supplementation (from 1.10 E% to
2.91 E%) (Table 2). This led to a two-fold increase in the n-6/n-3
ratio from 3.71 at baseline to 11.4 at follow-up after n-6 supple-
mentation. For the pooled sample, this ratio correlated modestly at
baseline with the n-6/n-3 ratio measured in RBCMs (Pearson's r
[95% BCa CI]: 0.46 [0.13, 0.67], p = 0.004), while the correlation was
stronger at follow-up (0.78 [0.70, 0.84], p < 0.001) and between
relative change scores (0.87 [0.80, 0.91], p < 0.001).

The Likert scale data on physical activity level showed no sig-
nificant changes in mean total scores from baseline to follow-up
within treatment period one (absolute change [95% CI]: +0.27
[-1.35, 1.89], p = 0.741) and period two (+112 [-1.75, 3.98],
p 0.441), during the washout phase (-0.77, [-3.57, 2.02],
p = 0.585), or between baseline measurements (B2 vs. B1 [95%
CI]: —0.50 [-2.79, 1.79], p = 0.666).
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Table 1

Baseline characteristics by sequence and period.*

Clinical Nutrition 40 (2021) 2556—2575

Characteristics Pooled Sequence AB Sequence BA

Baseline 1 (n = 39) Period 1 (n = 20) Period 2 (n = 19) Period 1 (n = 19) Period 2 (n = 19)
Male (%)° 23 (59) 12 (60) 11 (58) 11 (58) 11 (58)
Age, years 55.6 (9.3) 57.0 (10.0) 54.2 (8.5)
BMI, kg/m? 29.2 (4.11) 29.5 (4.23) 29.8 (4.48) 28.9 (4.07) 29.2 (4.20)
Waist circumference, cm 104 (10.2) 104 (10.8) 103 (10.7) 104 (9.89) 103 (10.3)
Visceral fat area, cm? 163 (61.6) 159 (64.2) 171 (68.4) 167 (60.3) 171 (49.0)
Energy intake, kcal/d 2224 (529) 2259 (451) 2281 (477) 2190 (608) 2085 (649)
Carbohydrate, E% 37.4(7.04) 38.6 (7.07) 39.8 (6.98) 36.2 (6.98) 38.2 (8.09)
Protein, E% 17.4 (3.67) 16.4 (2.53) 16.3 (2.11) 18.4 (4.37) 19.0 (3.80)
Fat, E% 38.8 (6.10) 38.3 (4.54) 37.4 (4.87) 39.2 (7.45) 37.6 (7.05)
SFAs, E% 14.4 (3.62) 13.8 (2.94) 14.0 (3.11) 14.9 (4.20) 14.5 (3.47)
MUFAs, E% 12.9 (2.99) 12.4 (2.73) 12.6 (2.35) 13.4(3.21) 13.4 (2.90)
PUFAs, E% 5.95(1.92) 6.06 (2.23) 5.65 (1.62) 5.83 (1.61) 5.01(1.32)
Physical activity score 9.79 (8.66) 9.74 (9.29) 7.58 (8.20) 9.84 (8.25) 11.0 (9.44)
n-3 index, wt%, RBCMs 8.47 (7.14,10.1) 8.57 (7.02, 10.5) 9.77 (8.41, 11.3) 8.37(7.29,9.61) 8.38 (7.03, 9.99)
LA, wt%, RBCMs 8.76 (8.06, 9.52) 8.81 (8.08, 9.60) 8.67 (7.82,9.62) 8.71 (8.02, 9.46) 8.68 (8.03, 9.38)
Total VLDLs, nmol/L 42.7 (225, 81.0) 43.0 (23.0, 80.5) 44.6 (28.5, 69.7) 42.3 (215, 82.9) 45.3 (26.1, 78.5)
Large VLDLs, nmol/L 2.77 (0.83,9.23) 2.85(0.82,9.93) 420 (1.21, 14.6) 2.69 (0.82, 8.82) 3.29(1.00, 10.9)

( ( (

Small VLDLs, nmol/L
Total LDLs, nmol/L
Large LDLs, nmol/L
Small LDLs, nmol/L
Total HDLs, pmol/L
Large HDLs, umol/L
Small HDLs, pmol/L

20.1(9.84, 41.0)
1323 (1052, 1663)
488 (336, 710)
450 (190, 1067)
30.1(26.0, 34.7)
5.93 (3.30, 10.7)
16.9 (12.7, 22.6)

17.6 (8.48, 36.5)
1297 (1019, 1651)
488 (328, 726)
413 (166, 1026)
30.2 (26.0, 35.0)
577 (2.94,11.3)
17.4 (137, 22.2)

17.3 (6.10, 49.0)
1268 (939, 1712)
444 (262, 751)
429 (149, 1236)

23.3(11.7, 463)
1350 (1084, 1681)
489 (341, 702)
493 (216, 1125)

21.3 (8.96, 50.5)
1361 (1039, 1783)
507 (350, 735)
538 (241, 1199

Lp(a), mg/L 99.6 (37.6, 264) 90.6 (35.4, 232)
TAGs, mmol/L 1.30 (0.84, 2.00) 1.32(0.86, 2.04)
NEFAs, mmol/L 0.49 (0.28, 0.88) 0.56 (0.34, 0.90)
TC, mmol/L 5.66 (4.85, 6.62) 564 (4.92, 6.48)
LDL-C, mmol/L 3.83 (3.14, 4.66) 3.78 (3.15, 4.54)
HDL-C, mmol/L 1.38 (1.02, 1.87) 1.40 (1.01, 1.93)
non-HDL-C, mmol/L 420 (3.41, 5.16) 414 (3.38, 5.08)
ApoB, g/L 1.08 (0.91, 1.29) 1.06 (0.90, 1.25)
ApoA-], g/L 1.48 (1.26, 1.74) 1.49 (1.26, 1.74)
HOMA2-IR 1.53 (1.03, 2.30) 1.51 (0.95, 2.41)

)
30.9 (26.6, 35.9) 30.0 (25.9, 34.6) 29.5 (25.4, 34.3)
7.18 (4.15, 12.4) 6.09 (3.72, 9.98) 6.40 (3.93, 10.4)
14.0 (8.93, 22.1) 16.4 (11.7, 22.9) 15.9 (13.7, 18.4)
86.4 (33.0, 226) 110 (394, 307) 107 (38.9, 296)
134 (0.83, 2.16) 1.28 (0.82, 1.98) 1.25 (0.75, 2.06)
0.42 (0.26, 0.68) 0.43 (0.22, 0.82) 0.49 (031, 0.78)
5.77 (4.87, 6.83) 5.69 (4.76, 6.79) 5.76 (4.87, 6.83)
3.89 (3.11, 4.87) 3.87 (3.12, 4.81) 4,05 (3.32, 4.95)
1.44 (1.01, 2.06) 1.36 (1.03, 1.81) 1.36 (1.02, 1.80)
418 (3.26, 5.37) 426 (3.44, 5.28) 434 (3.50, 5.38)
1.09 (0.89, 1.33) 1.11 (0.92, 1.34) 1.13 (0.94, 1.36)
1.50 (1.25, 1.80) 148 (1.25, 1.74) 1.45 (1.23, 1.70)
1.90 (1.34, 2.69) 1.55 (1.10, 2.19) 1.59 (1.03, 2.43)

Abbreviations: Apo, apolipoprotein; E%, energy percentage of total energy intake; HDLs, HDL particles; HDL-C, HDL cholesterol; HOMA2-IR, homeostasis model assessment of
insulin resistance index 2 (computer model); LA, linoleic acid (C18:2n6); LDLs, LDL particles; LDL-C, LDL cholesterol; Lp(a), lipoprotein (a); MUFAs; monounsaturated fatty
acids; n-3, omega-3 PUFAs; n-6, omega-6 PUFAs; NEFAs, non-esterified fatty acids; non-HDL-C, non-HDL cholesterol; PUFAs; polyunsaturated fatty acids; RBCMs, red blood
cell membranes; SFAs; saturated fatty acids; TAGs, triacylglycerols; TC, total cholesterol; VLDLs, VLDL particles; wt%, weight percentage of total fatty acids.

2 Values are geometric means (1 SD ranges) and arithmetic means (SDs) of fasting blood levels and other measurements, respectively, at baseline in period 1 (before
randomization) and period 2 (after the washout phase) of each sequence. Pooled values at the first baseline visit before any intervention are also shown. Sequence AB and BA
received the n-3 and n-6 intervention first, respectively. One participant was lost to follow-up after one month during the first intervention period. The n-3 index is the total

sum of EPA (C20:5n-3) and DHA (C22:6n-3) measured in RBCMs (wt%).©
b Values are numbers (%) of males in each sequence and period.

¢ Arithmetic means (SDs) of biochemical variables are shown in Supplemental Table 3.

3.4. Fatty acid profiles in RBCMs as a measure of compliance

The observed within-treatment changes and between-
treatment differences in the RBCM fatty acid profiles indicated
good compliance with the interventions (Table 3, Supplemental
Tables 6 and 7). The n-6/n-3 ratio of RBCMs decreased on average
by 40.2% (—1.07) after the n-3 intervention and increased by 10.8%
(+0.20) after n-6 supplementation (Table 3, Supplemental Table 7).
On the other hand, the n-3 index increased by 48.4% (+4.14 wt%)
and decreased by 5.25% (—0.44 wt%) after the n-3 and n-6 treat-
ments, respectively, from a relatively high mean level of 8.50 (SD
1.37) wt% at B1. In all participants, the n-3 index increased and
achieved a level of >8 wt% after n-3 supplementation, of whom 13
achieved a level of >12 wt¥%.

The RBCM levels of EPA and DHA expressed as wt% increased by
227% (+2.65 wt%, +18.0 pg/mL) and 17.7% (+1.24 wt%, +8.24 png/
mL), respectively, after the n-3 intervention, and decreased by
16.8% (—0.49 wt%, —4.12 ng/mL) and 2.99% (—0.22 wt%, —3.96 pug/
mL) after n-6 supplementation (Table 3, Supplemental Table 7).
Furthermore, LA wt% in RBCMs decreased by 18.2% (—1.58 wt
%, —11.8 pg/mL) after n-3 and increased by 13.4% (+1.16 wt
%, +8.90 ng/mL) after n-6.
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Notably, we found a period-specific response in most of the
reported FA measures for the n-6 intervention, but not for n-3
(Supplemental Tables 8 and 9). The relative changes in the period
with n-6 treatment that followed the n-3 intervention in sequence
AB, were significantly greater than in the period with n-6 treatment
that preceded the n-3 intervention in sequence BA, except for ALA,
LA, and GLA. Importantly, the changes in RBCM FAs after n-3 sup-
plementation in sequence AB did not fully rebound to the pre-
treatment levels after the washout phase and consequently
affected these FA levels in RBCMs into the next intervention period
(Supplemental Text, Results; Supplemental Fig. 5), which may be
related to the significant differences in between-period responses
observed in most FA parameters after n-6 supplementation
(Supplemental Tables 8 and 9).

3.5. Primary outcomes

3.5.1. Lipoprotein particle subclasses

The period-adjusted mixed modeling showed that the differ-
ence between interventions in relative changes from baseline to
follow-up was significant for total (n-3 vs. n-6: —-38.2%
[-15.7 nmol/L] vs. +16.3% [+4.25 nmol/L], p < 0.001), large (—58.1%
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Table 2
Recorded intakes of energy and macronutrients (E%) at baseline and during the intervention periods.*
Variable and treatment Baseline Follow-up Absolute change® Time® Tx x time'
(n = 38)° (n = 35)°

Energy, diet, kcal® 0.886
n-3 2224 (529) 2144 (563) ~714 (~178, 35.6) 0.189
n-6 2147 (516) —62.5 (~170, 45.2) 0.253

Energy, total, kcal® 0.011
n-3 2224 (529) 2197 (555) ~6.75 (113, 99.8) 0.900
n-6 2366 (532) +156 (50.2, 262) 0.004

Carbohydrate, E% 0.055
n-3 37.4(7.04) 38.0 (7.49) +0.86 (—1.07, 2.78) 0.380
n-6 36.6 (7.40) ~0.88 (—2.79, 1.04) 0.366

Protein, E% 0.001
n-3 17.4 (3.67) 17.1 (3.07) ~0.25 (~1.17, 0.67) 0.588
n-6 15.7 (2.79) —1.74 (-2.65, —0.83) <0.001

Fat, E% <0.001
n-3 38.8 (6.10) 39.4 (5.83) 4+0.53 (~1.47, 2.53) 0.602
n-6 42.8 (5.86) +4.22 (2.22,6.21) <0.001

Fiber, E% 0.135
n-3 1.80 (0.43) 1.80 (0.46) ~0.020 (~0.16, 0.12) 0.770
n-6 1.69 (0.42) ~0.12 (—0.26, 0.014) 0.077

Added sugar, E% 0.762
n-3 492 (3.58) 474 (3.34) 10.042 (—0.76, 0.84) 0.918
n-6 4.68 (3.30) —0.068 (—0.86, 0.73) 0.865

Alcohol, E% 0.336
n-3 4.71 (4.29) 3.82 (3.65) —-1.03 (-2.11, 0.057) 0.063
n-6 3.29 (3.38) ~1.47 (—2.54, —0.39) 0.008

SFAs, E% 0.141
n-3 14.4 (3.62) 14.1 (2.75) —0.21 (—1.28, 0.86) 0.696
n-6 13.4 (3.21) ~0.91 (—1.98, 0.16) 0.095

MUFAs, E% 0.233
n-3 12.9 (2.99) 12.8 (2.99) —0.033 (-1.03, 0.96) 0.947
n-6 13.2 (248) +0.50 (—0.50, 1.49) 0.323

PUFAs, E% <0.001
n-3 5.95 (1.92) 6.88 (1.45) +0.88 (0.15, 1.62) 0.019
n-6 11.0 (1.88) +5.14 (4.42, 5.88) <0.001

TRFAs, E% 0.331
n-3 0.31(0.16) 0.32(0.14) +0.002 (—0.054, 0.058) 0.947
n-6 0.29 (0.14) —0.025 (—0.080, 0.031) 0.382

n-3 PUFAs, E% <0.001
n-3 1.10 (0.55) 2.91 (0.84) +1.81 (1.56, 2.05) <0.001
n-6 0.95 (0.36) —0.16 (—0.40, 0.085) 0.197

n-6 PUFAs, E% <0.001
n-3 3.60 (1.25) 3.42 (0.99) ~0.20 (—0.73, 0.32) 0.444
n-6 9.35 (1.64) +5.76 (5.24, 6.29) <0.001

n-6/n-3 ratio <0.001
n-3 3.71 (1.44) 1.26 (0.50) ~2.49 (-3.61, -1.37) <0.001
n-6 11.4 (4.52) +7.64 (6.53, 8.75) <0.001

Abbreviations: E%, energy percentage of total energy intake; LMEM, linear mixed-effects model; n-3, omega-3 PUFAs; n-6, omega-6 PUFAs; TRFAs, trans fatty acids; Tx,

treatment.

¢ Pooled period data of total dietary and supplemental intakes of energy and macronutrients were analyzed with LMEMs (see main text).

b Values are arithmetic means (SDs) of dietary intakes recorded two times during seven consecutive days in the run-in period (baseline).

¢ Values are arithmetic means (SDs) of total dietary and supplemental intakes recorded over seven consecutive days during both intervention periods (in wk five). One
participant was lost to follow-up during the first intervention period in sequence AB.

4 Absolute changes from baseline to follow-up as mean change scores (95% Cls) from LMEMs.

€ P-values (from LMEMs) for absolute changes from baseline to follow-up within treatments (time effects).

f P-values (from LMEMSs) for absolute changes from baseline to follow-up between treatments (group differences in time effects).

& Energy, diet: recorded energy intake from the diet only. Energy, total: total energy intake from the diet and supplementation products.

[—2.76 nmol/L] vs. —0.91% [—2.22 nmol/L], p < 0.001), and small
(—57.0% [—8.27 nmol/L] vs. +40.7% [+4.60 nmol/L], p < 0.001)
VLDLs (Fig. 4A—E, Supplemental Tables 10 and 11). A large but non-
significant difference was found for medium VLDLs (-23.1%
[-2.66 nmol/L] vs. +2.76% [—1.20 nmol/L], p = 0.163), and the
relative change scores in mean VLDL size differed non-significantly
between the treatments (—0.77% [-0.48 nm] vs. —5.00%
[-3.12 nm], p = 0.235). These differences arose from significant
reductions in total, large, and small VLDLs following the n-3
intervention, while small VLDLs increased after n-6 supplementa-
tion, contributing to the significant decrease in mean VLDL size
following this intervention.

2566

A differential response in relative change scores was also found
for total (n-3 vs. n-6: +5.76% [+79.3 nmol/L] vs. —4.25%
[-59.3 nmol/L], p = 0.002) and large (+22.9% [+121 nmol/L]
vs. —212% [-12.0 nmol/L], p 0.004) LDLs (Fig. 4F-],
Supplemental Tables 10 and 11). Here, we observed in total LDLs a
significant increase after n-3 and a decrease after n-6, while large
LDLs changed significantly only after n-3 supplementation. We
found no significant between-treatment difference for IDLs
(—=59.8% [—92.2 nmol/L] vs. —44.8% [-97.9 nmol/L], p = 0.258)
after large reductions following both interventions, neither for
small LDLs (+2.34% [+44.4 nmol/L] vs. +4.04% [+29.1 nmol/L],
p = 0.886), nor for LDL size (—0.36% [-0.080 nm] vs. —0.71%
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Table 3
Relative changes in RBCM fatty acid levels after 7 wk of supplementation with n-3 or n-6 PUFAs.?
Variable and treatment Baseline Follow-up Relative change* Time! Tx x time®
(n =39)° (n=38)"

n-6/n-3 ratio <0.001
n-3 243 (1.97, 2.99) 1.45 (122, 1.73) —40.2 (—42.1, -38.2) <0.001
n-6 2.20 (1.80, 2.69) 2,57 (2.17, 3.03) +10.8 (7.18, 14.5) <0.001

n-3 index, wt% <0.001
n-3 8.48 (7.04, 10.2) 125 (11.0, 14.3) +48.4 (44.1, 52.9) <0.001
n-6 9.04 (7.69, 10.6) 8.33 (7.18, 9.66) ~5.25(—8.03, —2.38) 0.001

ALA, wt% 0.019
n-3 0.18 (0.14, 0.24) 0.15 (0.12, 0.19) ~16.1 (-21.5, —=10.3) <0.001
n-6 0.19 (0.15, 0.24) 0.14 (0.12, 0.17) ~-243(-29.2, -19.1) <0.001

EPA, wt% <0.001
n-3 1.33(0.91, 1.94) 4.14 (3.25, 5.26) 1227 (198, 258) <0.001
n-6 1.66 (1.19, 2.31) 1.22 (0.90, 1.63) -16.8 (—22.3, —10.9) <0.001

DPA, wt% <0.001
n-3 3.00 (2.74, 3.29) 3.88 (3.61,4.18) +29.0 (26.6, 31.4) <0.001
n-6 330 (2.92,3.72) 3.03 (2.78, 3.30) —4.74 (—6.52, —2.94) <0.001

DHA, wt% <0.001
n-3 7.11 (6.08, 8.32) 8.36 (7.56, 9.24) +17.7 (14.8, 20.7) <0.001
n-6 7.34 (6.42, 8.39) 7.09 (6.21, 8.09) ~2.99 (—4.76, —1.18) 0.001

LA, wt% <0.001
n-3 8.74 (8.06, 9.49) 7.21 (6.45, 8.06) ~182(-20.1, -16.2) <0.001
n-6 8.69 (7.92, 9.54) 9.90 (9.14, 10.7) +13.4(10.8, 16.2) <0.001

GLA, wt% <0.001
n-3 0.050 (0.037, 0.068) 0.029 (0.021, 0.040) —43.8 (—48.5, —38.6) <0.001
n-6 0.049 (0.036, 0.066) 0.051 (0.038, 0.068) +1.38 (-7.19, 10.7) 0.758

DGLA, wt% <0.001
n-3 1.59 (1.35, 1.87) 1.16 (0.97, 1.38) —27.1(-29.3, —24.8) <0.001
n-6 1.56 (1.33, 1.84) 1.60 (1.36, 1.87) +1.76 (~1.32, 4.94) 0.262

AA, wt% <0.001
n-3 15.3 (13.8, 16.9) 13.5(12.3, 14.8) -11.5(-12.6, —10.4) <0.001
n-6 14.8 (13.3,16.3) 15.2 (13.9, 16.5) +1.17 (-0.071, 2.42) 0.064

Abbreviations: AA, arachidonic acid; ALA, a-linolenic acid; DGLA, dihomo-v-linolenic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic
acid; GLA, y-linolenic acid; LA, linoleic acid; LMEM, linear mixed-effects model; n-3, omega-3 PUFAs; n-6, omega-6 PUFAs; PUFAs, polyunsaturated fatty acids; RBCMs, red

blood cell membranes; Tx, treatment; wt%, weight percentage of total fatty acids.

2 Pooled period data of fasting RBCM fatty acid levels (measured as wt%) were analyzed with LMEMs adjusted for the main effect of period. Values were transformed by the
natural logarithm before the analyses. The n-6/n-3 ratio was calculated from the total levels of n-6 and n-3 PUFAs. The n-3 index is the total sum of EPA and DHA measured in

RBCMs (wt%).
b

c
d

e

Values are geometric means (1 SD ranges) of fasting levels at baseline and follow-up.

Relative changes from baseline to follow-up as percentages (95% Cls) calculated from LMEM estimates: % = (exp
P-values (from LMEMs) for relative changes from baseline to follow-up within treatments (time effects).
P-values (from LMEMs) for relative changes from baseline to follow-up between treatments (group differences in time effects).

estimate

—-1) x 100.

f Arithmetic means (SDs) and absolute change scores (95% Cls) from mixed modeling of untransformed data are shown in Supplemental Table 7.

[-0.16 nm], p = 0.343) after a significant reduction following the
n-6 supplementation.

Moreover, a significant between-treatment difference in relative
change scores was observed for total (n-3 vs. n-6: —5.97%
[—1.83 pmol/L] vs. +3.73% [+1.25 umol/L], p < 0.001), large (+10.5%
[+0.84 pmol/L] vs. —5.32% [-0.20 umol/L], p = 0.001), medium
(—24.4% [-0.96 umol/L] vs. +6.21% [+0.31 umol/L], p = 0.030), and
small (—9.86% [—1.45 pmol/L] vs. +9.55% [+1.24 pumol/L], p = 0.002)
HDLs (Fig. 4K—0, Supplemental Tables 10 and 11). After the n-3
intervention, the mixed modeling showed significant reductions in
total, medium, and small HDLs, and a higher concentration of large
HDLs, while small HDLs increased after n-6 supplementation. The
redistribution of HDL subfractions translated into a significant
between-treatment difference in mean HDL size (+1.22%
[+0.12 nm] vs. —1.17% [-0.11 nm], p < 0.001) after a significant
increase following the n-3 supplementation and a decrease after
the n-6 intervention.

Looking at the intervention periods separately (Supplemental
Tables 12 and 13), we found a period-specific response in relative
change scores for medium HDLs (P1 vs. P2: +6.49% [+0.39 pmol/L]
vs. —50.1% [-2.94 umol/L], p = 0.001) and small HDLs (—23.4%
[—3.29 umol/L] vs. —1.57% [+0.10 pmol/L], p = 0.014) after the n-3
intervention, and for large VLDLs (+49.0% [+0.69 nmol/L]
vs. —29.6% [—3.03 nmol/L], p = 0.011), mean HDL-P size (+0.032%
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[4+0.005 nm] vs. —2.02% [—0.20 nm], p = 0.018), and Lp(a) (—14.2%
[-23.3 mg/L] vs. +3.21% [-0.44 mg/L], p = 0.009) after n-6
supplementation.

3.5.2. Standard lipids

Regarding Lp(a) and standard blood lipids, our period-adjusted
mixed modeling showed a significant between-treatment differ-
ence in relative changes from baseline to follow-up for TAGs (n-3
vs. n-6: —15.7% [-0.26 mmol/L] vs. —2.60% [—0.12 mmol/L],
p 0.014), NEFAs (—18.6% [-0.091 mmol/L] vs. +5.46%
[+0.028 mmol/L], p = 0.033), and TC (—0.28% [—0.007 mmol/L]
vs. —4.44% [—0.25 mmol/L], p = 0.042), and also for the lipid ratio
TAGs/HDL-C (—20.3% [-0.29] vs. —4.42% [-0.16], p = 0.006)
(Fig. 5A—], Supplemental Tables 10 and 11). Non-significant differ-
ences were found for LDL-C (—0.84% [—0.024 mmol/L] vs. —5.84%
[-0.23 mmol/L], p = 0.067), HDL-C (+5.44% [+0.071 mmol/L]
vs. +2.44% [+0.036 mmol/L], p = 0.219), non-HDL-C (—2.23%
[-0.091 mmol/L] vs. —7.07% [-0.30 mmol/L], p = 0.059), TRL-C
(=17.5% [-0.071 mmol/L] vs. -19.3% [-0.084 mmol/L],
p = 0.844), and the TC/HDL-C ratio (—5.93% [-0.28] vs. —6.95%
[-0.33], p = 0.684), as well as for PLs (—1.87% [—-0.054 mmol/L]
vs. —2.23%[—0.070 mmol/L], p = 0.871), FC (—0.52% [—0.003 mmol/
L] vs. —2.93% [-0.046 mmol/L], p = 0.305), and Lp(a) (+0.36%
[-1.48 mg/L] vs. —8.89% [-15.5 mg/L], p 0.067). The n-3
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Fig. 4. Differences between treatments in period-adjusted change and follow-up scores for lipoprotein subfractions after 7 wk of supplementation with n-3 or n-6 PUFAs. The
bar plots show relative changes from baseline to follow-up and between-treatment differences in change and follow-up scores for lipoprotein subclass particles and sizes. VLDL
and LDL particles were measured in nmol/L, HDL particles in pmol/L, and particle sizes in nm. Pooled period data were analyzed with LMEMs adjusted for overall period effects
(see main text). Before the analysis, values were transformed by the natural logarithm and multiplied by 100 to show within-group changes and between-group differences as
additive, symmetric percentages (sympercents; see main text). Error bars represent 95% confidence intervals. Relative within-treatment changes from baseline to follow-up
after n-3 supplementation are shown in blue bars, and after n-6 supplementation in orange bars. Between-treatment differences in relative change scores are shown by light
grey bars (primary analysis), while the dark grey bars display relative between-treatment differences in follow-up scores adjusted for B1 (secondary analysis). Number of
participants included: n = 39 at baseline in P1; n = 38 at follow-up in P1; n = 38 at baseline in P2; n = 38 at follow-up in P2. Abbreviations: ACS, analysis of change scores;
AFSB, analysis of follow-up scores adjusted for pre-treatment values from the first baseline measurements (B1); Apo, apolipoprotein; HDL, HDL particles; IDLs, intermediate-
density lipoprotein particles; LDLs, LDL particles; LMEM, linear mixed-effects model; n-3, omega-3 PUFAs; n-6, omega-6 PUFAs; P1, the first intervention period; P2, the second
intervention period; s%, sympercent; VLDLs, VLDL particles. Total VLDLs and large VLDLs also include chylomicrons if present. One influential outlier was excluded from the
final analyses of medium HDLs.

intervention was followed by significant reductions in TAGs, NEFAs, treatment difference in relative change scores for LDL-C or non-
and TRL-C, and in the lipid ratios TAG/HDL-C and TC/HDL-C, while HDL-C. Furthermore, the distribution of all HDL subclasses
HDL-C increased significantly. On the other hand, we found after n- changed differently after the interventions, leading to a signifi-
6 supplementation lower levels of TC, LDL-C, non-HDL-C, and TRL- cantly larger mean HDL size after n-3 supplementation relative to
C, and also a decrease in the TC/HDL-C ratio and the Lp(a) level. n-6, while we found no significant between-treatment difference in

A period-specific response in relative change scores was found relative change scores for HDL-C. Large variations in individual

after the n-6 treatment for TAGs (P1 vs. P2: +9.26% [+0.10 mmol/L] responses were observed for all lipoprotein subclasses and stan-
vs. —10.8% [—0.24 mmol/L], p = 0.021), PLs (+2.06% [+0.054 mmol/ dard lipids, and the mean levels after the first intervention period
L] vs. —5.96% [-0.18 mmol/L], p = 0.005), and FC (+0.90% did not fully rebound to the pre-treatment levels after the washout
[+0.011 mmol/L] vs. —7.04% [-012 mmol/L], p = 0.011) phase for all of these variables (Supplemental Figs. 6 and 7). Find-
(Supplemental Tables 12 and 13). Accordingly, we observed for ings from analyses of rank-transformed values and adjustments of
TAGs, as we did for large, TAG-rich VLDLs, a significant between- multiplicity are presented in Supporting Information (Supple-
treatment difference in relative change scores after the first mental Text, Results).
period, but not after the second period.

Taken together, our results showed among the primary out- 3.6. Secondary outcomes
comes significantly greater reductions in circulating levels of TAG-
rich lipoproteins (TRLs), TAGs, and NEFAs after n-3, and in TC after 3.6.1. Apolipoprotein profile
n-6, relative to the other supplement. Notably, both large and small Fasting serum levels of apolipoproteins showed significantly
VLDL subclasses were significantly reduced after the n-3 inter-  different between-treatment changes from baseline to follow-up in
vention, while small VLDLs increased after n-6. Although large, relative terms for apoB (n-3 vs. n-6: +0.40% [+0.005 g/L] vs. —6.04%
cholesterol-rich LDLs increased significantly after n-3 supplemen- [-0.066 g/L], p = 0.008), apoA-II (—6.03% [—0.027 g/L] vs. +1.53%
tation compared to n-6, we found no significant between- [+0.008 g/L], p = 0.001), apoC-1I (—11.0% [-0.026 g/L] vs. —1.74%
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Fig. 5. Differences between treatments in period-adjusted change and follow-up scores for lipoprotein (a), blood lipids, and apolipoproteins after 7 wk of supplementation with n-3
or n-6 PUFAs. The bar plots show relative changes from baseline to follow-up and between-treatment differences in change and follow-up scores for lipoprotein (a) (A), blood lipids
(B—J), and apolipoproteins (K—R), as well as for HOMA2-IR (S) and BMI (T). Blood lipids were measured in mmol/L and apolipoproteins in g/L. Abbreviations: Apo, apolipoprotein;
HDL-C, HDL cholesterol; HOMA2-IR, homeostasis model assessment of insulin resistance index 2 (computer model); LDL-C, LDL cholesterol; Lp(a), lipoprotein (a); NEFAs, non-
esterified fatty acids; non-HDL-C, non-HDL cholesterol; TAGs, triacylglycerols; TC, total cholesterol; TRL-C, TAG-rich lipoprotein cholesterol. See further explanation and abbre-

viations in Fig. 4.

[-0.007 g/L], p = 0.025), and apoE (+3.28% [+0.003 g/L] vs. —3.79%
[-0.004 g/L], p = 0.028), as well as for the ratio apoB/apoA-I
(+0.58% [+0.002] vs. —6.45% [-0.051], p = 0.004) (Fig. 5K—R,
Supplemental Tables 10 and 11). We found no significant difference
between treatments for apoA-I (—0.63% [—0.012 g/L] vs. +1.17%
[+0.016 g/L], p 0.364) and apoC-IlI (—8.45% [-0.028 g/L]
vs. —0.67% [—0.007 g/L], p = 0.129), and for the apoC-II/apoC-III
ratio (—2.59% [-0.013] vs. —3.06% [-0.018], p = 0.828). The
mixed modeling showed that the n-3 intervention was followed by
significantly lower serum levels of apoA-II, apoC-II, and apoC-III,
while we observed after n-6 supplementation reductions in apoB
and the apoB/apoA-I ratio. Significant period-specific responses in
relative terms were found for the n-6 treatment in apoC-II (P1 vs.
P2: +5.54% [ +0.009 g/L] vs. —9.04% [-0.022 g/L], p = 0.011), apoC-
I (+11.7% [+0.031 g/L] vs. —9.22% [-0.028 g/L], p = 0.002), and
apoE (+2.93% [+0.002 g/L] vs. —8.93% [-0.009 g/L], p = 0.010)
(Supplemental Tables 12 and 13). In several of these variables we
also observed that the concentrations did not fully rebound to the
pre-treatment levels after the washout phase (Supplemental Fig. 8).

3.6.2. Glycemic control and insulin sensitivity

The relative change scores were non-significantly different be-
tween treatments for all indices of glycemic control and insulin
sensitivity, including glucose (n-3 vs. n-6: +1.24% [+0.075 mmol/L]
vs. +1.27%[+0.066 mmol/L], p = 0.983), insulin (+10.1% [+0.95 mU/
L] vs. +1.70% [+0.45 mU/L], p = 0.282), INCP (+7.35% [+0.048 nmol/
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L] vs. +0.92% [+0.009 nmol/L], p = 0.220), and HOMA2-IR (+7.80%
[+0.11] vs. +1.60% [+0.031], p = 0.260) (Supplemental Tables 14
and 15, Fig. 5S for HOMA2-IR). The mixed modeling showed a
significant change over time in relative terms after the n-3 inter-
vention for fasting INCP, HOMA2-IR, and HOMA2-%S, but not for
glucose, HbA1c, insulin, or LP-IR. For n-6 supplementation, these
variables changed on average in the same direction as for n-3, but to
a lesser degree and statistically non-significant. Notably, we found
period-specific responses in most markers of glycemic control and
insulin sensitivity after the n-6 intervention. These period differ-
ences were, however, statistically significant in relative terms only
for glucose (P1 vs. P2: +4.43% [+0.23 mmol/L] vs. —1.33%
[-0.078 mmol/L], p = 0.030) (Supplemental Tables 16 and 17).

3.6.3. BMI and body composition

The recorded difference in total energy intake between in-
terventions (Table 2) could potentially lead to different changes in
anthropometric measurements, such as body weight or fat accu-
mulation, which could indirectly affect other outcome measures.
However, in our period-adjusted analysis, we found trivial or small
and non-significant group differences in absolute and relative
change scores for all of the anthropometric variables measured
(Supplemental Tables 14 and 15, Fig. 5T for BMI). Notably, we
observed after n-6 supplementation a small but statistically sig-
nificant increase in mean body weight (0.81% [+0.68 kg], p = 0.010)
and BMI (+0.81% [+0.23 kg/m?], p = 0.010), while body fat mass
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increased significantly following both the n-3 (+1.84% [+0.44 kg],
p = 0.046) and n-6 (+1.84% [+0.59 kg], p = 0.046) interventions. A
period-specific response was not observed among anthropometric
variables, except for visceral fat area after the n-6 intervention,
which increased non-significantly in the first period and decreased
non-significantly in the second period (P1 vs. P2: +4.44%
[+5.68 cm?] vs. —6.24% [~7.05 cm?], p = 0.014) (Supplemental
Tables 16 and 17).

3.7. Secondary analyses

Results from the secondary analyses of baseline- and period-
adjusted follow-up scores are summarized in Supplemental
Table 18 and also graphically presented in Figs. 4 and 5 to enable
direct comparisons of the primary and secondary analyses of
between-treatment differences. The secondary analyses supported
overall the results from the primary analyses of change scores by
showing nearly the same pattern of between-treatment differ-
ences, characterized by significantly greater reductions in TAG-
related markers after n-3 supplementation and in cholesterol-
related measures after n-6 supplementation, compared to the
other intervention.

Findings from covariate-adjusted mixed models are summa-
rized in the Supporting Information (Supplemental Text, Results).
The mixed modeling did not indicate significant carryover effects
for any of the primary lipoprotein and lipid measures (Supple-
mental Text, Results).

3.8. Liver markers

Among the circulating safety markers related to liver function,
we observed a significant difference between treatments in relative
change scores only for ALP (n-3 vs. n-6: —4.18% [-2.79 U/L]
vs. +0.81% [+0.24 U/L], p = 0.041) after a significant decrease
following the n-3 intervention and a non-significant increase after
n-6 supplementation (Supplemental Tables 14 and 15). Addition-
ally, ALAT showed a significant increase (+10.5% [+3.68 U/L],
p = 0.013) after n-3 supplementation.

3.9. Adverse events

The questionnaire about symptoms typically related to changes
in dietary or supplemental intake showed that the participants
most frequently reported regurgitation, rumbling in stomach/in-
testines, bloating/distension, heartburn, diarrhea, and/or acute
stomach ache (Supplemental Table 19). Overall, the severity was
experienced to be mild or moderate, and adverse events occurred
more often during the n-6 than the n-3 intervention.

3.10. Within-subject variability and correlation

Within-subject SDs and Pearson's rs for correlations between
follow-up scores in the two intervention periods are presented in
Supplemental Table 20 for all primary and some secondary
outcomes.

4. Discussion

We conducted the first crossover trial comparing the effects of
n-3 (high EPA + DHA) and n-6 (high LA) PUFAs on the concentra-
tions and sizes of all major lipoprotein particle subclasses and
related lipids and apolipoproteins in a high-risk population of
inactive adults with abdominal obesity and various degrees of
dyslipidemia. Our findings showed that marine-based n-3 PUFAs
(mainly EPA + DHA) primarily lowered fasting blood levels of TAG-
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related markers, while plant-based n-6 PUFAs (mainly LA) pri-
marily reduced cholesterol-related measures, compared to the
other intervention. These changes after n-3 and n-6 supplemen-
tation have been associated with reduced cardiometabolic risk
[1,9,16], partly via differential mechanisms [2,10].

Cardiometabolic effects of supplemental PUFAs are largely
mediated through changes in the FA composition of different tis-
sues, and circulating FA levels can reflect such changes [103], as
well as adherence to the interventions [85]. The responses in the
RBCM fatty acid profile after the high-dose supplementation with
EPA + DHA, showing that the content of DHA increased much less
than EPA, are in line with previous n-3 PUFA intervention trials
[104—109]. These results may be partly explained by retro-
conversion of DHA to EPA [104,110], a rate of DHA utilization that
matches DHA synthesis [109], and/or a feedback inhibition of EPA
metabolism resulting in an accumulation of EPA (from ALA)
following DHA supplementation [109,111]. Moreover, our obser-
vation that RBCM AA did not increase significantly with higher LA
intake is consistent with previous research demonstrating that a
dose response between dietary LA intakes and tissue AA levels does
not exist among individuals consuming a Western-type diet con-
taining LA over a wide range of E% [112—114]. This is probably due
to limited enzymatic conversion of LA to AA, estimated to be
0.3—0.6% in stable isotope tracer studies [115], and not because of
tissue AA saturation [114].

Among 10 other RCTs reporting NMR-measured concentrations
and sizes of all major lipoprotein particle subclasses after treatment
with n-3 or n-6 PUFAs [63—71,116], none showed overall the same
pattern (signs and magnitudes) of changes across the lipoprotein
subfractions. Of note, these RCTs were highly heterogeneous in
study design, with supplemental doses of n-3 PUFAs ranging from 2
to 4 g/d of EPA and/or DHA (DHA/EPA ratio between 0.3 and 1.7).
The only consistent findings across these studies were lower con-
centrations of large VLDLs and reduced mean VLDL sizes following
EPA and/or DHA interventions compared to placebos containing
highly variable oil types and LA quantities. In the present study, we
also observed a significant reduction in large VLDLs (and chylo-
microns when present) after n-3 supplementation, and the effect
size was comparable to the previous RCTs with similar supple-
mental doses (3—4 g EPA + DHA/d) [65—67,71,117]. However, we
found no change in mean VLDL size, partly because of a concurrent
reduction in small particles, as observed in only one of the other
RCTs [66]. Of note, none of the other n-3 intervention trials used
fish oil in TAG form compared to a vegetable oil rich in LA, as in the
present study.

Increased intake of marine, long-chained n-3 PUFAs primarily
inhibits hepatic synthesis and secretion of larger, TAG-rich VLDLs,
and secondarily improves VLDL clearance and enhances VLDL
conversion to IDLs and LDLs [40,53,58], as well as increasing
chylomicron TAG clearance [118], thereby lowering circulating TAG
levels. Tracer kinetic studies have consistently shown that 3—4 g
EPA/DHA per day induces a ~30% reduction in hepatic VLDL-TAG
production [58], which likely explains most of the ~30% (range
16—45%) decrease in plasma TAG levels observed in numerous
clinical trials [29,55]. It is also well established that intake of n-3
PUFAs lowers TAG concentrations in a dose-dependent manner and
relative to pre-treatment levels [41,57,59]. Thus, the modest TAG
reduction (—16%) observed in the present study may be partly
explained by the relatively low VLDL and TAG concentrations at
baseline, possibly related to the high pre-treatment n-3 index,
which is typically observed in Scandinavia [119].

NEFAs from adipose tissues contribute the largest fraction of FAs
to hepatic VLDL-TAG production in both the fasted and fed states in
different metabolic conditions [120], and it has been proposed that
the TAG lowering effect of n-3 PUFAs is best explained by an effect
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on the NEFA pool [58]. Consistent with this, we observed a signif-
icant reduction in NEFAs after n-3 supplementation that may be
large enough to explain most of the reduction in TAGs [58,120]. The
significant increase in fasting insulin levels following this inter-
vention may also have affected the NEFA flux and hepatic output of
TRLs, as insulin inhibits lipolysis in adipose tissues [121]. Accord-
ingly, we found that relative changes in NEFAs and insulin were
inversely related (data not shown).

Moreover, n-3 PUFAs may increase the expression and activity of
lipoprotein lipase (LpL) [118,122], the intravascular lipolytic
enzyme that hydrolyzes TAGs in chylomicrons and VLDLs [123],
forming smaller and less TAG-rich remnant particles, including
smaller VLDLs and IDLs [124,125]. Thus, both reduced hepatic
secretion and increased lipolytic conversion of TRLs may explain
the lower levels of these particles after n-3 supplementation in the
present study. The large reductions in small VLDLs and IDLs prob-
ably resulted partly from lipolytic conversion to even smaller par-
ticles [10]. Besides, medium-sized lipoproteins normally have a
greater affinity for hepatic apoB/apoE receptors and are, therefore,
more effectively cleared from the circulation than larger or smaller
particles [124—126].

The significant increase we found after the n-3 intervention in
large LDLs, which are overall much less strongly related to CVD risk
than sdLDLs [2,127], has been observed in other RCTs
[63,65—68,71], but not all [64,69,70]. This elevation may be partly
explained by the fewer VLDLs secreted from the liver and enhanced
hydrolysis of those particles that are secreted, of which a higher
proportion may be smaller, denser, and less TAG-rich [124,128],
resulting in greater conversion to IDLs and LDLs and formation of
larger, more buoyant, and cholesterol-rich LDLs [56,124,126]. Yet,
the cholesterol-increasing effect reported by several investigators
[55,129], especially when supplementing with DHA [42], was not
found in the present study, probably partly due to the large con-
current reduction in IDLs.

Although animal studies have shown that n-3 PUFAs, especially
DHA, increase the plasma level and activity of cholesteryl ester
transfer protein (CETP) [130], the shift in HDL (and LDL) subclass
particles we observed after n-3 supplementation indicates reduced
activity of CETP [131,132], probably related to the lower TRL and
TAG levels [124,126,133]. Lowered CETP activity decreases the ex-
change of cholesterol from HDLs for TAGs from VLDLs [131,132], and
consequently increases larger, cholesterol-rich HDLs and lowers
TAG-rich HDLs, that otherwise have their TAGs hydrolyzed by he-
patic lipase to form smaller HDL subfractions [133]. Accordingly, we
observed higher HDL-C, despite the reduction in total HDLs, partly
because of elevation in large HDLs and decrease in small HDLs,
which is consistent with some previous reports [63,66].

The significant reductions observed after n-3 supplementation
in apoC-II, an important cofactor for LpL, and apoC-IIl, an inhibitor
of LpL activity and, more importantly, hepatic clearance of lipo-
proteins [134], which also has been reported by others [65,67,76],
likely reflect a smaller pool of circulating lipoprotein carriers, pri-
marily chylomicron remnants, large VLDLs, IDLs, and HDLs. Besides,
the apoC-IIl concentration in serum and on lipoprotein particles
may be lowered by direct effects of n-3 PUFAs and insulin on he-
patic apoC-III production [134]. Overall, this indicates a reduction in
apoC—Ill—enriched Lp-B, which are among the most atherogenic
particles [27,28]. The significant reduction after n-3 supplementa-
tion in apoA-II, which primarily resides on medium-sized and small
HDLs [135], was probably related to the lower concentrations of
these particles and possibly also of VLDLs and IDLs, of which small
subpopulations contain apoA-II [136].

Experimental data have demonstrated that n-6 PUFAs (LA)
reduce circulating VLDL levels by increasing VLDL lipolysis and
uptake [137]. This is consistent with a previous PUFA intervention
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trial [68], but not with several other reports [64,66,67,116], and it
was not evident in the present study, showing trivial changes in
TAGs and TRLs and a significant increase in small VLDLs after n-6
supplementation. The large decrease in IDLs also after this inter-
vention, which correlated significantly with the reduction in total
LDLs (data not shown), may be related to a reduced LDL apoB-100
production rate with increased LA intake [138], as well as high af-
finity of IDLs for hepatic apoB/apoE receptors [124,125]. The
redistribution of LDL subfractions after the n-6 treatment probably
led to the significant reduction in mean LDL size, as well as in LDL-C,
and the change in total serum level of apoB indicates fewer
potentially atherogenic particles in circulation [22], including less
Lp(a), which has been independently associated with CVD
[139,140].

According to a recent extensive systematic review of RCTs
assessing cardiometabolic effects of n-6 fats in the long term [50],
higher n-6 intake was associated with a small reduction in serum
TC (10 trials) but insignificant changes in TAGs (5 trials), LDL-C (2
trials), and HDL-C (4 trials). Moreover, several short-term RCTs have
demonstrated that plant oils rich in n-6 PUFAs reduce the levels of
TC and LDL-C, while the effects on HDL-C were insignificant or
unclear [44,60,61]. Notably, a recent systematic review and
network meta-analysis comparing the effects of oils and solid fats
on blood lipids found that safflower oil, used in our study, was most
effective for decreasing TC and LDL-C compared to rapeseed, sun-
flower, and soybean oils [62]. The findings from this analysis and
the short-term RCTs are consistent with the current study.

Among the strengths of the present work are the detailed di-
etary information, use of high-quality supplemental products in
high doses, well-characterized fatty acid composition and mea-
sures of oxidative quality of both oils, and detailed analyses of fatty
acid profiles in blood. Notably, it has been shown that high-quality
versus oxidized fish oils have different effects on lipoprotein-lipid
profiles [72], emphasizing the importance of reporting quality pa-
rameters of supplemental oils, which has been lacking in similar
RCTs [63—71,116]. Moreover, using a high-quality n-6-rich oil with
low levels of oxidation products and TRFAs may be an important
factor to provide a cardioprotective effect. Previous n-6 PUFA
intervention trials have used n-6-rich oils or other fatty foods from
different sources, often with unknown levels of oxidation products
and TRFAs. Different concentrations across studies of such sub-
stances, contained originally in the products and/or formed during
different cooking processes [141,142], may partly explain some of
the controversies regarding LAs cardioprotective effects
[49,143—146].

Limitations of the present work include short treatment dura-
tion and an increased risk of false positives with a large number of
statistical tests. Additionally, we recruited a heterogeneous group
of participants regarding the degree of pre-treatment dyslipidemia
and insulin resistance, and sex-dependent effects may have
contributed to outcome heterogeneity. Notably, this study was
conducted in a population from Western Norway with high pre-
treatment levels of circulating n-3 PUFAs (EPA + DHA) and rela-
tively low levels of n-6 PUFAs (LA), which is typically observed in
Nordic countries [38,119]. This FA composition probably reflects the
dietary habits in Norway, including a higher proportion of fatty fish
compared with many other countries [147], as well as a typically
low intake of n-6 PUFAs [81], and may partly explain that the
majority of participants had normal or low pre-treatment levels of
TAGs and TRLs. However, previous studies have reported higher
CVD risk with increasing TAG levels within what is considered a
‘normal’ range [11].

Another important issue is the presence of potential carryover
effects, since n-3 supplementation in the first intervention period
affected the RBCM FA levels into the next period, indicating a too
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short washout phase, although it was much longer than in previous
crossover trials measuring all major lipoprotein subfractions after
PUFA interventions [66,70]. Therefore, we have reported results for
each intervention in each period, as recommended for crossover
studies [101], and conducted a secondary analysis of between-
treatment differences in follow-up scores, which are less biased
by potential carryover effects than change scores [101,148—150].
However, in the absence of a 3 x 3 crossover design including a
placebo control intervention assumed to have neutral effects on the
primary outcomes, a challenge described elsewhere [47,71,151,152],
we were not able to provide placebo-adjusted treatment effect
estimates for both the n-3 and n-6 interventions.

5. Conclusions

Supplementation with marine-derived n-3 PUFAs (mainly
EPA + DHA) was followed by reduced levels of TAGs and TRLs, a
shift in LDLs and HDLs towards larger and more cholesterol-rich
particles, and lower apoC-IIl concentration. After treatment with
plant-derived n-6 PUFAs (mainly LA), on the other hand, we
observed less Lp-B and lower cholesterol levels in conjunction with
a reduction in IDLs and total LDLs, as well as Lp(a). The responses
after both interventions point to changes in the lip-
oprotein—lipid—apolipoprotein profile that have been associated
with reduced cardiometabolic risk, also among people with TAG or
LDL-C levels within the normal range. Our study supports that
physicians should encourage high-risk patients with abdominal
obesity and low consumption levels of n-3 and/or n-6 PUFAs to
increase the intake of high-quality oils and/or other foods con-
taining these fatty acids.
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