19 research outputs found

    Revealing the Supply Chain 4.0 Potential within the European Automotive Industry

    Get PDF
    With the rapid advancements in Information and Communication Technologies (ICT) and the widespread enthusiasm of both theoreticians and practitioners, the broader transition to Industry 4.0 (I4.0) in major industries appears imminent. This empirical study analyzes business data from 1140 automotive companies operating in Europe, utilizing various business intelligence platforms and employing decision tree analytics to establish connections between enablers, drivers, company size, and financial resources. The goal is to identify persistent barriers hindering the rational transition to Industry 4.0. The findings reveal an uneven transformation within the industry nexus. While larger companies possess the financial means to allocate collective intelligence, technical resources, and drive necessary for fulfilling I4.0 requirements, smaller members of the nexus lag behind despite their enthusiasm and intent. This imbalanced evolution poses a threat to the comprehensive transformation required for realizing all the benefits of Industry 4.0 within the sector. The primary discovery indicates that small to medium-sized enterprises do not exhibit the same rates of Industry 4.0 adoption, a lag highly correlated with their available financial and human resources for digital transition. The decision tree proposed in this study offers guidelines for achieving an Industry 4.0-compliant nexus. Given its diversity and substantial global impact, the case study from the automotive industry proves intriguing and may later be generalized to other sectors. The study’s outcome could empower engineering managers and researchers to implement, execute, and assess the impact of digital strategies based on the financial capabilities of industrial institutions

    The Effect of Laser Shock Peening (LSP) on the Surface Roughness and Fatigue Behavior of Additively Manufactured Ti-6Al-4V Alloy

    Get PDF
    Laser shock peening (LSP) uses plasma shock waves to induce compressive residual stress at the surface of a component which has the potential to improve its fatigue properties. For AM parts, the existence of internal defects, surface roughness, and tensile residual stresses leads to noticeably lower fatigue strength compared to materials produced through conventional processes. Furthermore, there is a tendency for greater scatter in the fatigue behavior of these parts when compared to traditionally manufactured components. In this study, the effect of LSP on the roughness and fatigue behavior of Ti-6Al-4V alloy constructed through Laser Powder Bed Fusion (L-PBF) technique was investigated. Two types of samples were designed and tested: as-built surface air foil samples for four-point bending tests and machined surface straight gage samples for uniaxial fatigue testing. Two sets of process parameters, optimized and non-optimized, were also used for the fabrication of each sample type. It was found that LSP had negative effects on the smooth (i.e., machined) surface samples, whereas for as-built surfaces the roughness was enhanced by decreasing the sharpness of the deep valleys and partially remelting the loosely bonded particles on the peaks. It was found that the scatter of the fatigue data decreased for optimized machined samples, while no clear improvement was observed in their lives. However, all non-optimized samples showed improvements in fatigue lives after the LSP process

    Laser induced plasma characterization in direct and water confined regimes: new advances in experimental studies and numerical modelling

    Get PDF
    Optimization of the laser shock peening (LSP) and LASer Adhesion Test (LASAT) processes requires control of the laser-induced target's loading. Improvements to optical and laser technologies allow plasma characterization to be performed with greater precision than 20 years ago. Consequently, the processes involved during laser-matter interactions can be better understood. For the purposes of this paper, a self-consistent model of plasma pressure versus time is required. The current approach is called the inverse method, since it is adjusted until the simulated free surface velocity (FSV) corresponds to the experimental velocity. Thus, it is not possible to predict the behavior of the target under shock without having done the experiments. For the first time, experimental data collected in different labs with the most up-to-date laser parameters are used to validate a self-consistent model for temporal pressure-profile calculation. In addition, the parameters characterizing the plasma (temperature, thickness and duration) are obtained from the ESTHER numerical code, together with the amount of ablated matter. Finally, analytic fits are presented that can reproduce any pressure-temporal profiles in the following domains of validity: Intensities, I, ranging from 10 to 500 GW cm-2 and pulse durations, T pul, between 5 and 40 ns for the direct-illumination regime at 1053 nm, I ranging from 1 to 6 GW cm-2 and T pul between 10 to 40 ns in the water-confined regime at 1053 nm, and I from 1 to 10 GW cm-2 and T pul between 7 and 20 ns in the water-confined regime at 532 nm. These temporal pressure profiles can then be used to predict the aluminum target's behavior under laser shock using mechanical simulation software

    MEDICEM Institute, spol. s.r.o. - Technology to shape hydrogels by lasers

    No full text
    We have prepared study with aim to propose a technology allowing to shape hydrogels by lasers and to describe a project (including timelines, milestones, team and budget) that would lead to the development of such technology, including supportive scientific, technical and theoretical information

    BRK Technologies s.r.o. - Laser incineration of toxic medical wastes: towards to 100% safety

    No full text
    The aim of the project is to design, construct and optimize a prototype of a laser incineration chamber (LICh) for treatment of toxic medical wastes. The LICh must provide safe incineration of organic wastes by an intense laser beam generating very high temperature of the incineration process. The LICh and involved technology must be relatively cheap and mobile for easy installation near the medical institutions producing toxic wastes. The most important aspect is the control of incineration products to ensure 100% safety of the gases issuing into atmosphere from the LICh. This is the first step of the whole project with aim to do the state of the art study and propose next steps

    Anti-Reflection Nanostructures on Tempered Glass by Dynamic Beam Shaping

    No full text
    Reflectivity and surface topography of tempered glass were modified without any thermal damage to the surroundings by utilizing 1.7 ps ultrashort pulsed laser on its fundamental wavelength of 1030 nm. To speed up the fabrication, a dynamic beam shaping unit combined with a galvanometer scanning head was applied to divide the initial laser beam into a matrix of beamlets with adjustable beamlets number and separation distance. By tuning the laser and processing parameters, reflected intensity can be reduced up to 75% while maintaining 90% of transparency thus showing great potential for display functionalization of mobile phones or laptops
    corecore