55 research outputs found
Biohydrogen production from food waste: Influence of the inoculum-to-substrate ratio
In this study, the influence of the inoculum-to-substrate ratio (ISR) on dark fermentative hydrogen production from food waste (FW) was evaluated. ISR values ranging from 0.05 to 0.25 g VSinoculum/g VSsubstrate were investigated by performing batch tests at T = 39 °C and pH = 6.5, the latter being the optimal value identified based on a previous study. The ISR was found to affect the fermentation process, clearly showing that an adequate ISR is essential in order to optimise the process kinetics and the H2 yield. An ISR of 0.14 proved to optimum, leading to a maximum H2 yield of 88.8 L H2/kg VSFW and a maximum production rate of 10.8 L H2/kg VSFW∙h. The analysis of the fermentation products indicated that the observed highest H2 production mostly derived from the typical acetate/butyrate-type fermentation
Anaerobic Biodegradability of Commercial Bioplastic Products: Systematic Bibliographic Analysis and Critical Assessment of the Latest Advances
Bioplastics have entered everyday life as a potential sustainable substitute for commodity plastics. However, still further progress should be made to clarify their degradation behavior under controlled and uncontrolled conditions. The wide array of biopolymers and commercial blends available make predicting the biodegradation degree and kinetics quite a complex issue that requires specific knowledge of the multiple factors affecting the degradation process. This paper summarizes the main scientific literature on anaerobic digestion of biodegradable plastics through a general bibliographic analysis and a more detailed discussion of specific results from relevant experimental studies. The critical analysis of literature data initially included 275 scientific references, which were then screened for duplication/pertinence/relevance. The screened references were analyzed to derive some general features of the research profile, trends, and evolution in the field of anaerobic biodegradation of bioplastics. The second stage of the analysis involved extracting detailed results about bioplastic degradability under anaerobic conditions by screening analytical and performance data on biodegradation performance for different types of bioplastic products and different anaerobic biodegradation conditions, with a particular emphasis on the most recent data. A critical overview of existing biopolymers is presented, along with their properties and degradation mechanisms and the operating parameters influencing/enhancing the degradation process under anaerobic conditions
Treatment of Severe Post-traumatic Bone Defects With Autologous Stem Cells Loaded on Allogeneic Scaffolds.
Mesenchymal stem cells may differentiate into angiogenic and osteoprogenitor cells. The effectiveness of autologous pluripotent mesenchymal cells for treating bone defects has not been investigated in humans. We present a case series to evaluate the rationale of using nucleated cells from autologous bone marrow aspirates in the treatment of severe bone defects that failed to respond to traditional treatments. Ten adult patients (mean age, 49.6-years-old) with severe bone defects were included in this study. Lower limb bone defects were >or=5 cm3 in size, and upper limb defects .or=2 cm3. Before surgery, patients were tested for antibodies to common pathogens. Treatment consisted of bone allogeneic scaffold enriched with bone marrow nucleated cells harvested from the iliac crest and concentrated using an FDA-approved device. Postsurgery clinical and radiographic follow-up was performed at 1, 3, 6, and 12 months. To assess viability, morphology, and immunophenotype, bone marrow nucleated cells were cultured in vitro, tested for sterility, and assayed for the possible replication of adventitious (contaminating) viruses. In 9 of 10 patients, both clinical and radiographic healing of the bone defect along with bone graft integration were observed (mean time, 5.6 months); one patient failed to respond. No post-operative complications were observed. Bone marrow nucleated cells were enriched 4.49-fold by a single concentration step, and these enriched cells were free of microbial contamination. The immunophenotype of adherent cells was compatible with that of mesenchymal stem cells. We detected the replication of Epstein-Barr virus in 2/10 bone marrow cell cultures tested. Hepatitis B virus, cytomegalovirus, parvovirus B19, and endogenous retrovirus HERV-K replication were not detected. Overall, 470 to 1,150 million nucleated cells were grafted into each patient. This case series, with a mean follow-up of almost 2 years, demonstrates that an allogeneic bone scaffold enriched with concentrated autologous bone marrow cells obtained from the iliac crest provides orthopedic surgeons a novel option for treating important bone defects that are unresponsive to traditional therapies
Identidades juveniles fragmentadas y su construcción a través del contenido de la plataforma streaming Netflix: serie 13 Reason Why (Por trece razones) en los estudiantes de primer y segundo año de la carrera de Comunicación Para el Desarrollo durante el II semestre del año 2019
A lo largo de los años los productos audiovisuales han jugado un papel importante en la construcción de identidades e influido en ciertos comportamientos de la sociedad, han impuesto moda y proyectado personajes que marcan la vida de sus fanáticos.
Hoy en día con el avance de la tecnología la televisión tradicional ha disminuido su auge en la preferencia del público dando paso a la era digital con la implementación de las plataformas streaming que proyectan productos audiovisuales variados, extranjeros, con más cultura y basado en la realidad, al igual dichas plataformas están diseñadas para transmitir lo que el público quiere ver al momento en el que se quiera ver.
El presente trabajo se basa en la descripción y el estudio de la serie por Trece razones, producción transmitida por Netflix que tiene como objetivo mostrar al público ciertas situaciones que viven los jóvenes en la actualidad. Se aplicó la encuesta a jóvenes universitarios de la carrera de Comunicación para el Desarrollo del primero y segundo año de la UNAN Managua, con el apoyo de entrevista a experto en el tema, con el objetivo de analizar dicha serie y plasmar la importancia de que los productos audiovisuales vayan encaminados a la formación de valores y las relaciones interpersonales y cuál es la influencia que estos tienen en el desarrollo social, psicológico y físico de los jóvenes por medio de dichos productos
Two-Stage Process for Energy Valorization of Cheese Whey through Bio-Electrochemical Hydrogen Production Coupled with Microbial Fuel Cell
The present work investigates a two-stage process scheme for cheese whey valorization through energy recovery in different forms by means of bio-electrochemical systems. The first stage consisted of an integrated bio-electrochemical process for H2 and electricity production. This combined dark fermentation with an electrochemical system with the aim of overcoming the typical thermodynamic/biochemical limitations of fermentation and enhancing H2 recovery. The second treatment stage involved a single-chamber microbial fuel cell, featuring an innovative configuration consisting of four air cathodes with fly ash as the oxygen reduction catalyst. The bio-electrochemical process performed in the first stage achieved promising results, displaying a three-times higher H2
production yield compared to conventional dark fermentation. In addition, the experiments using the MFC in the second stage were found to successfully exploit the effluent from the first stage, with COD removal yields of 86% +/- 8% and energy recovery with a maximum current output of 1.6 mA and a maximum power density of 1.2 W/m3
Disposable Mater-Bi® bioplastic tableware: Characterization and assessment of anaerobic biodegradability
In this study commercial starch-based (Mater-Bi®) disposable bioplastic tableware items, which are among the most widely used commercial products available on the market, were selected for lab-scale anaerobic degradability tests. Since the knowledge of the biodegradation profile of bioplastic products is still incomplete, the study was aimed at investigating the maximum biodegradation potential of the materials under ideal anaerobic conditions, as well as the biodegradability degree as a function of treatment time. The experiments were carried out under mesophilic and thermophilic conditions at different food to microorganism ratios and test material sizes, and the specific biogas production and associated kinetics were evaluated. Biogas production was observed only under thermophilic conditions, with conversion yields in the range 602–898 mL/gTOC for the tested cups and 1207 ± 52.8 mL/gTOC for the knives. The degrees of biodegradation and disintegration were found to be strongly dependent on the product composition. Physical, chemical and morphological analyses were used to characterize the tested materials before and after the degradation and potential correlations among process parameters and bioplastic characteristics were derived
Performance Assessment of the LIAISON\uae SARS-CoV-2 Antigen Assay On Nasopharyngeal Swabs
The SARS-CoV-2 pandemic is ongoing worldwide, causing prolonged pressure on molecular diagnostics. Viral antigen (Ag) assays have several advantages, ranging from lower cost to shorter turnaround time to detection. Given the rare occurrence of low-load viremia, antigen assays for SARS-CoV-2 have focused on nasopharyngeal swab and saliva as biological matrices, but their effectiveness must be validated. We assayed here the performances of the novel quantitative Liaison\uae SARS-CoV-2 Ag assay on 119 nasopharyngeal swabs and obtained results were compared with Hologic Panther and Abbott m2000 RT-qPCR. The Ag assay demonstrated a good correlation with viral load, shorter turnaround time, and favorable economics. The best performance was obtained in the acute phase of disease
Organic waste biorefineries: looking towards implementation
The concept of biorefinery expands the possibilities to extract value from organic matter in form of either bespoke crops or organic waste. The viability of biorefinery schemes depends on the recovery of higher-value chemicals with potential for a wide distribution and an untapped marketability. The feasibility of biorefining organic waste is enhanced by the fact that the biorefinery will typically receive a waste management fee for accepting organic waste. The development and implementation of waste biorefinery concepts can open up a wide array of possibilities to shift waste management towards higher sustainability. However, barriers encompassing environmental, technical, economic, logistic, social and legislative aspects need to be overcome. For instance, waste biorefineries are likely to be complex systems due to the variability, heterogeneity and low purity of waste materials as opposed to dedicated biomasses. This article discusses the drivers that can make the biorefinery concept applicable to waste management and the possibilities for its development to full scale. Technological, strategic and market constraints affect the successful implementations of these systems. Fluctuations in waste characteristics, the level of contamination in the organic waste fraction, the proximity of the organic waste resource, the markets for the biorefinery products, the potential for integration with other industrial processes and disposal of final residues are all critical aspects requiring detailed analysis. Furthermore, interventions from policy makers are necessary to foster sustainable bio-based solutions for waste management
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
- …