163 research outputs found

    Neural detection of complex sound sequences in the absence of consciousness

    Get PDF
    Neural responses to violations of global regularities are thought to require consciousness. However, Tzovara et al. show that some comatose patients can also detect deviations in sequences composed of repeated groups of sounds, suggesting that the unconscious brain has a greater capacity to track sensory inputs than previously believe

    EEG recording latency in critically ill patients: Impact on outcome. An analysis of a randomized controlled trial (CERTA).

    Get PDF
    OBJECTIVE To assess, in adults with acute consciousness impairment, the impact of latency between hospital admission and EEG recording start, and their outcome. METHODS We reviewed data of the CERTA trial (NCT03129438) and explored correlations between EEG recording latency and mortality, Cerebral Performance Categories (CPC), and modified Rankin Scale (mRS) at 6 months, considering other variables, using uni- and multivariable analyses. RESULTS In univariable analysis of 364 adults, median latency between admission and EEG recordings was comparable between surviving (61.1 h; IQR: 24.3-137.7) and deceased patients (57.5 h; IQR: 22.3-141.1); p = 0.727. This did not change after adjusting for potential confounders, such as lower Glasgow Coma Score on enrolment (p < 0.001) and seizure or status epilepticus detection (p < 0.001). There was neither any correlation between EEG latency and mRS (rho 0.087, p 0.236), nor with CPC (rho = 0.027, p = 0.603). CONCLUSION This analysis shows no correlation between delays of EEG recordings and mortality or functional outcomes at 6 months in critically ill adults. SIGNIFICANCE These findings might suggest that in critically ill adults mortality correlates with underlying brain injury rather than EEG delay

    Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest

    Get PDF
    Introduction: Continuous EEG (cEEG) is increasingly used to monitor brain function in neuro-ICU patients. However, its value in patients with coma after cardiac arrest (CA), particularly in the setting of therapeutic hypothermia (TH), is only beginning to be elucidated. The aim of this study was to examine whether cEEG performed during TH may predict outcome. Methods: From April 2009 to April 2010, we prospectively studied 34 consecutive comatose patients treated with TH after CA who were monitored with cEEG, initiated during hypothermia and maintained after rewarming. EEG background reactivity to painful stimulation was tested. We analyzed the association between cEEG findings and neurologic outcome, assessed at 2 months with the Glasgow-Pittsburgh Cerebral Performance Categories (CPC). Results: Continuous EEG recording was started 12 ± 6 hours after CA and lasted 30 ± 11 hours. Nonreactive cEEG background (12 of 15 (75%) among nonsurvivors versus none of 19 (0) survivors; P &lt; 0.001) and prolonged discontinuous "burst-suppression" activity (11 of 15 (73%) versus none of 19; P &lt; 0.001) were significantly associated with mortality. EEG seizures with absent background reactivity also differed significantly (seven of 15 (47%) versus none of 12 (0); P = 0.001). In patients with nonreactive background or seizures/epileptiform discharges on cEEG, no improvement was seen after TH. Nonreactive cEEG background during TH had a positive predictive value of 100% (95% confidence interval (CI), 74 to 100%) and a false-positive rate of 0 (95% CI, 0 to 18%) for mortality. All survivors had cEEG background reactivity, and the majority of them (14 (74%) of 19) had a favorable outcome (CPC 1 or 2). Conclusions: Continuous EEG monitoring showing a nonreactive or discontinuous background during TH is strongly associated with unfavorable outcome in patients with coma after CA. These data warrant larger studies to confirm the value of continuous EEG monitoring in predicting prognosis after CA and TH

    EEG-based outcome prediction after cardiac arrest with convolutional neural networks: Performance and visualization of discriminative features.

    Get PDF
    Prognostication for comatose patients after cardiac arrest is a difficult but essential task. Currently, visual interpretation of electroencephalogram (EEG) is one of the main modality used in outcome prediction. There is a growing interest in computer-assisted EEG interpretation, either to overcome the possible subjectivity of visual interpretation, or to identify complex features of the EEG signal. We used a one-dimensional convolutional neural network (CNN) to predict functional outcome based on 19-channel-EEG recorded from 267 adult comatose patients during targeted temperature management after CA. The area under the receiver operating characteristic curve (AUC) on the test set was 0.885. Interestingly, model architecture and fine-tuning only played a marginal role in classification performance. We then used gradient-weighted class activation mapping (Grad-CAM) as visualization technique to identify which EEG features were used by the network to classify an EEG epoch as favorable or unfavorable outcome, and also to understand failures of the network. Grad-CAM showed that the network relied on similar features than classical visual analysis for predicting unfavorable outcome (suppressed background, epileptiform transients). This study confirms that CNNs are promising models for EEG-based prognostication in comatose patients, and that Grad-CAM can provide explanation for the models' decision-making, which is of utmost importance for future use of deep learning models in a clinical setting

    Diagnostic and prognostic EEG analysis of critically ill patients: A deep learning study.

    Get PDF
    Visual interpretation of electroencephalography (EEG) is time consuming, may lack objectivity, and is restricted to features detectable by a human. Computer-based approaches, especially deep learning, could potentially overcome these limitations. However, most deep learning studies focus on a specific question or a single pathology. Here we explore the potential of deep learning for EEG-based diagnostic and prognostic assessment of patients with acute consciousness impairment (ACI) of various etiologies. EEGs from 358 adults from a randomized controlled trial (CERTA, NCT03129438) were retrospectively analyzed. A convolutional neural network was used to predict the clinical outcome (based either on survival or on best cerebral performance category) and to determine the etiology (four diagnostic categories). The largest probability output served as marker for the confidence of the network in its prediction ("certainty factor"); we also systematically compared the predictions with raw EEG data, and used a visualization algorithm (Grad-CAM) to highlight discriminative patterns. When all patients were considered, the area under the receiver operating characteristic curve (AUC) was 0.721 for predicting survival and 0.703 for predicting the outcome based on best CPC; for patients with certainty factor ≥ 60 % the AUCs increased to 0.776 and 0.755 respectively; and for certainty factor ≥ 75 % to 0.852 and 0.879. The accuracy for predicting the etiology was 54.5 %; the accuracy increased to 67.7 %, 70.3 % and 84.1 % for patients with certainty factor of 50 %, 60 % and 75 % respectively. Visual analysis showed that the network learnt EEG patterns typically recognized by human experts, and suggested new criteria. This work demonstrates for the first time the potential of deep learning-based EEG analysis in critically ill patients with various etiologies of ACI. Certainty factor and post-hoc correlation of input data with prediction help to better characterize the method and pave the route for future implementations in clinical routine

    Progression of auditory discrimination based on neural decoding predicts awakening from coma

    Get PDF
    Auditory evoked potentials are informative of intact cortical functions of comatose patients. The integrity of auditory functions evaluated using mismatch negativity paradigms has been associated with their chances of survival. However, because auditory discrimination is assessed at various delays after coma onset, it is still unclear whether this impairment depends on the time of the recording. We hypothesized that impairment in auditory discrimination capabilities is indicative of coma progression, rather than of the comatose state itself and that rudimentary auditory discrimination remains intact during acute stages of coma. We studied 30 post-anoxic comatose patients resuscitated from cardiac arrest and five healthy, age-matched controls. Using a mismatch negativity paradigm, we performed two electroencephalography recordings with a standard 19-channel clinical montage: the first within 24 h after coma onset and under mild therapeutic hypothermia, and the second after 1 day and under normothermic conditions. We analysed electroencephalography responses based on a multivariate decoding algorithm that automatically quantifies neural discrimination at the single patient level. Results showed high average decoding accuracy in discriminating sounds both for control subjects and comatose patients. Importantly, accurate decoding was largely independent of patients' chance of survival. However, the progression of auditory discrimination between the first and second recordings was informative of a patient's chance of survival. A deterioration of auditory discrimination was observed in all non-survivors (equivalent to 100% positive predictive value for survivors). We show, for the first time, evidence of intact auditory processing even in comatose patients who do not survive and that progression of sound discrimination over time is informative of a patient's chance of survival. Tracking auditory discrimination in comatose patients could provide new insight to the chance of awakening in a quantitative and automatic fashion during early stages of com

    Auditory stimulation and deep learning predict awakening from coma after cardiac arrest.

    Get PDF
    Assessing the integrity of neural functions in coma after cardiac arrest remains an open challenge. Prognostication of coma outcome relies mainly on visual expert scoring of physiological signals, which is prone to subjectivity and leaves a considerable number of patients in a 'grey zone', with uncertain prognosis. Quantitative analysis of EEG responses to auditory stimuli can provide a window into neural functions in coma and information about patients' chances of awakening. However, responses to standardized auditory stimulation are far from being used in a clinical routine due to heterogeneous and cumbersome protocols. Here, we hypothesize that convolutional neural networks can assist in extracting interpretable patterns of EEG responses to auditory stimuli during the first day of coma that are predictive of patients' chances of awakening and survival at 3 months. We used convolutional neural networks (CNNs) to model single-trial EEG responses to auditory stimuli in the first day of coma, under standardized sedation and targeted temperature management, in a multicentre and multiprotocol patient cohort and predict outcome at 3 months. The use of CNNs resulted in a positive predictive power for predicting awakening of 0.83 ± 0.04 and 0.81 ± 0.06 and an area under the curve in predicting outcome of 0.69 ± 0.05 and 0.70 ± 0.05, for patients undergoing therapeutic hypothermia and normothermia, respectively. These results also persisted in a subset of patients that were in a clinical 'grey zone'. The network's confidence in predicting outcome was based on interpretable features: it strongly correlated to the neural synchrony and complexity of EEG responses and was modulated by independent clinical evaluations, such as the EEG reactivity, background burst-suppression or motor responses. Our results highlight the strong potential of interpretable deep learning algorithms in combination with auditory stimulation to improve prognostication of coma outcome

    Standardized visual EEG features predict outcome in patients with acute consciousness impairment of various etiologies.

    Get PDF
    Early prognostication in patients with acute consciousness impairment is a challenging but essential task. Current prognostic guidelines vary with the underlying etiology. In particular, electroencephalography (EEG) is the most important paraclinical examination tool in patients with hypoxic ischemic encephalopathy (HIE), whereas it is not routinely used for outcome prediction in patients with traumatic brain injury (TBI). Data from 364 critically ill patients with acute consciousness impairment (GCS ≤ 11 or FOUR ≤ 12) of various etiologies and without recent signs of seizures from a prospective randomized trial were retrospectively analyzed. Random forest classifiers were trained using 8 visual EEG features-first alone, then in combination with clinical features-to predict survival at 6 months or favorable functional outcome (defined as cerebral performance category 1-2). The area under the ROC curve was 0.812 for predicting survival and 0.790 for predicting favorable outcome using EEG features. Adding clinical features did not improve the overall performance of the classifier (for survival: AUC = 0.806, p = 0.926; for favorable outcome: AUC = 0.777, p = 0.844). Survival could be predicted in all etiology groups: the AUC was 0.958 for patients with HIE, 0.955 for patients with TBI and other neurosurgical diagnoses, 0.697 for patients with metabolic, inflammatory or infectious causes for consciousness impairment and 0.695 for patients with stroke. Training the classifier separately on subgroups of patients with a given etiology (and thus using less training data) leads to poorer classification performance. While prognostication was best for patients with HIE and TBI, our study demonstrates that similar EEG criteria can be used in patients with various causes of consciousness impairment, and that the size of the training set is more important than homogeneity of ACI etiology
    corecore