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Standardized visual EEG features predict 
outcome in patients with acute consciousness 
impairment of various etiologies
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Abstract 

Background:  Early prognostication in patients with acute consciousness impairment is a challenging but essential 
task. Current prognostic guidelines vary with the underlying etiology. In particular, electroencephalography (EEG) is 
the most important paraclinical examination tool in patients with hypoxic ischemic encephalopathy (HIE), whereas it 
is not routinely used for outcome prediction in patients with traumatic brain injury (TBI).

Method:  Data from 364 critically ill patients with acute consciousness impairment (GCS ≤ 11 or FOUR ≤ 12) of various 
etiologies and without recent signs of seizures from a prospective randomized trial were retrospectively analyzed. 
Random forest classifiers were trained using 8 visual EEG features—first alone, then in combination with clinical 
features—to predict survival at 6 months or favorable functional outcome (defined as cerebral performance category 
1–2).

Results:  The area under the ROC curve was 0.812 for predicting survival and 0.790 for predicting favorable outcome 
using EEG features. Adding clinical features did not improve the overall performance of the classifier (for survival: 
AUC = 0.806, p = 0.926; for favorable outcome: AUC = 0.777, p = 0.844). Survival could be predicted in all etiology 
groups: the AUC was 0.958 for patients with HIE, 0.955 for patients with TBI and other neurosurgical diagnoses, 0.697 
for patients with metabolic, inflammatory or infectious causes for consciousness impairment and 0.695 for patients 
with stroke. Training the classifier separately on subgroups of patients with a given etiology (and thus using less train‑
ing data) leads to poorer classification performance.

Conclusions:  While prognostication was best for patients with HIE and TBI, our study demonstrates that similar EEG 
criteria can be used in patients with various causes of consciousness impairment, and that the size of the training set 
is more important than homogeneity of ACI etiology.

Keywords:  Electroencephalography, Prognostication, Acute consciousness impairment, Hypoxic ischemic 
encephalopathy, Traumatic brain injury, Random forest

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Outcome prediction in patients with acute conscious-
ness impairment (ACI) in the intensive care unit is 
essential in order to inform the relatives and avoid 
futile treatment [1, 2]. Prognostication is based on 
clinical and paraclinical examinations including blood 
tests, neuroimaging and electrophysiology [3]. The 
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underlying cause of the ACI is considered to be rel-
evant while trying to predict the clinical outcome, 
mainly for two reasons: firstly, because different etiolo-
gies are inherently associated with different mortality 
rates (typically higher for anoxic-ischemic encepha-
lopathy (HIE) after cardiac arrest than for intoxication 
or status epilepticus, for instance [4]). Secondly, prog-
nostication algorithms—and the relative importance 
of each modality—are different depending on the pos-
tulated etiology [3, 5]. This is especially true for elec-
troencephalography (EEG). In patients with HIE, EEG 
has become the main prognostic tool, as several visual 
and quantitative (computer-derived) features have 
been shown to predict functional outcome [6–13]. In 
particular, a continuous and reactive EEG background 
suggests a favorable outcome, whereas a suppressed 
background or burst suppression with identical bursts 
is usually predictor of poor outcome [7, 8]. By contrast, 
EEG is not part of the main current prognostic scores 
used after traumatic brain injury (TBI), which instead 
rely on clinical markers, neuroimaging and blood val-
ues [14–16]. However, it has been known for decades 
that EEG can correlate with the severity of head injury 
[17, 18]. More recent studies demonstrated that visual 
EEG features such as background reactivity [19], con-
tinuity [20] or presence of stage N2 sleep transients 
[20] were associated with a favorable outcome after 
TBI. Using quantitative methods, background ampli-
tude, frequency and variability were also shown to pre-
dict clinical outcome [21, 22]. The same holds true for 
subarachnoid hemorrhage: while EEG is not integrated 
into current prognostic tools [23], many features such 
as stable alpha rhythm [24], presence of sleep architec-
ture or epileptiform activity [25, 26] can help predict 
the outcome.

The fact that the same EEG features (background 
reactivity, continuity, amplitude) have been used as 
prognostic markers in various etiologies raises the 
question whether similar criteria/decision making algo-
rithms could be applied to a cohort of patients with var-
ious ACI etiologies. A few studies have applied visual 
or quantitative EEG criteria to prognostication in vari-
ous origins of coma/ACI, but usually focused on a sin-
gle of a few variables [27–30]. Here, we investigate the 
prognostic value of a model combining 8 major visual 
features from the Standard Critical Care Terminology 
from the American Clinical Neurophysiology Soci-
ety (ACNS) [31] trained on a prospectively acquired 
cohort of patients with various etiologies of coma. The 
model is applied to patients with mixed etiologies, and 
then to subgroups of patients with specific subcatego-
ries of etiologies. Because it reflects the functioning of 
brain neurons, we postulate that EEG should be able to 

contribute to prognostication in all patients with ACI 
regardless of the underlying etiology.

Methods
Patients and EEG recordings
We performed a post hoc analysis of data prospectively 
acquired during the multicentric study CERTA (Continu-
ous EEG Randomized Trial in Adults; NCT03129438). 
Details of the study have been published elsewhere [32, 
33]. In short, patients > 18 with disorder of conscious-
ness of any etiology (defined as GCS ≤ 11 or FOUR ≤ 12) 
hospitalized on the Intensive or Intermediate Care 
Units of four Swiss hospitals (Lausanne University Hos-
pital (CHUV), Sion Hospital, Bern University Hospi-
tal (Inselspital), Basel University Hospital) for whom an 
EEG was requested for medical reasons were included. 
Exclusion criteria of the original study were clinical or 
electroencephalographic signs for seizures in the 36 h or 
status epilepticus in the 96 h preceding randomization, a 
palliative situation or documented refusal to participate 
to a clinical study. After inclusion, patients were rand-
omized to undergo either continuous EEG monitoring 
for 30–48  h, or two standard EEGs (20–30  min) within 
the same timeframe. The CERTA study and the post hoc 
analysis of EEG data were approved by the local ethic 
commissions (Project-ID 2017-00268).

Video-EEGs were performed with a NicoletOne sys-
tem (Viasys Neurocare, Madison WI, USA) using 21 
or 23 electrodes placed according to the international 
10:20-system. In neurosurgical patients, a reduced mon-
tage with 11 electrodes could be used [34]. For the pre-
sent study, we considered only the first EEG (in case two 
standard EEGs were performed) or the first interpre-
tation documented (in case of continuous EEG). EEG 
traces were interpreted during hospitalization by board-
certified electroencephalographers with additional cer-
tification in ACNS Standard Critical Care Terminology 
[31] (AOR, RZ, VA, SR, KS, FZ).

Etiology and outcome
At recruitment time, 14 non-mutually exclusive etiolo-
gies of ACI were registered. For the present study, we 
retrospectively formed four mutually exclusive etiologic 
groups, namely (1) Stroke: ischemic stroke, hemorrhagic 
stroke, non-traumatic subarachnoid hemorrhage; (2) 
TBI/NS: traumatic brain injury (TBI), subdural hema-
toma or other non-vascular non-traumatic neurosurgical 
conditions such as postoperative coma after brain tumor 
resection; (3) MIII: metabolic disturbance, intoxica-
tion, infection, inflammation; (4) HIE: hypoxic–ischemic 
encephalopathy after cardiac arrest from cardiac or non-
cardiac origin. In cases where the patient had diagno-
ses belonging to two of the above categories, the "most 
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severe" diagnosis would be considered (e.g. a patient with 
metabolic disturbance after HIE would be attributed to 
the etiologic group HIE). Two patients with both suba-
rachnoid hemorrhage and HIE were not attributed to any 
diagnostic group (due to "equal severity"). The above-
mentioned categorization was performed prior to data 
analysis. The rational for grouping traumatic and non-
traumatic non-vascular neurosurgical diagnoses was 
the presence of brain lesions and possible skull defect 
(causing a breach rhythm in the EEG) in both catego-
ries. However, since outcome prediction in critically ill 
patients with traumatic brain injury is of particular inter-
est, we also considered in the present study a subgroup 
with "pure" TBI patients (a subset of the TBI/NS sub-
group described above).

As was the case in the CERTA study, we considered as 
primary outcome the mortality at 6  months, which was 

prospectively collected. We also considered a secondary 
outcome based on the best cerebral performance cat-
egory (CPC) value reached within 6 months [35], dichot-
omized into a favorable (CPC 1 or 2) or unfavorable 
outcome (CPC 3–5).

Electroencephalographic and clinical features
Electroencephalographic and clinical features were used 
to predict the outcome (Table  1). EEG features were 
based on the ACNS standard terminology [31] and con-
sisted of: background continuity, background amplitude, 
background predominant frequency, background reactiv-
ity, background symmetry, presence of stage Non-REM 2 
sleep transients, presence of sporadic (i.e. non-rhythmic 
or periodic) epileptiform discharges and finally presence 
of rhythmic or periodic patterns. Five demographic and 
clinical features were considered, namely age, gender, 

Table 1  Electroencephalographic (EEG) and clinical features used for prognostication

Name Type Categories/values

EEG features

EEG background continuity Ordinal 1. Continuous/nearly continuous

2. Discontinuous

3. Burst suppression

4. Suppressed

Background amplitude Ordinal 1. < 10 µV

2. 10–20 µV

3. > 20 µV

Background frequency Ordinal 1. 1–3.5 Hz

2. 4–7.5 Hz

3. 8–13 Hz

4. > 13 Hz

Background reactivity Binary Absent/present

Background symmetry Binary Absent/present

Stage II sleep transients Binary Absent/present

Sporadic epileptiform discharges Binary Absent/present

Rhythmic or periodic patterns ("main term 2") Categorical 1. Periodic discharges

2. Rhythmic delta activity

3. Rhythmic spike waves/sharp wave

4. No rhythmic or periodic pattern

Clinical features

Age Continuous Real number

Gender Binary Female/male

Glasgow coma scale Ordinal 3–15

C-reactive protein Continuous Real number

Etiology Categorical 1. Stroke

2. Trauma/neurosurgery

3. Toxic/metabolic/infectious

4. Hypoxic ischemic encephalopathy

5. No etiology available
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Glasgow coma scale (GCS) at inclusion time (just prior 
to EEG recording), C-reactive protein (CRP) value dur-
ing the first EEG and etiology of coma postulated within 
1 week after inclusion.

Classification model
We used random forest (RF) classifiers [36] to predict 
clinical outcome. A RF consists of multiple decision trees 
that have been devised successively using the training set. 
For classification, the decision of all the trees is aggre-
gated to reach a global decision. We chose RF because 
of their natural ability to handle all types of variables, 
continuous, ordinal and nominal, without any preced-
ing reduction or transformation of the predictor space. 
In addition, RF models have a relatively low risk of over-
fitting, and they allow to easily counteract unbalanced 
data sets by setting class weights [37]. Finally, it has been 
shown that good performances are achieved without 
hyperparameter tuning (that is, using standard param-
eters) [38]. RF also provides a way to estimate the relative 
importance of the respective features (by evaluating their 
role as splitting variables in the decision trees composing 
the random forest), even though a direct computation of 
the predictive value (such as odds ratios) of each feature 
is not possible.

We first considered all patients, regardless of the 
underlying ACI etiology ("general classifier"). For this 
task, patients were divided into a stratified training set 
(2/3 of patients, N = 242) and a test set (1/3, N = 122). 
Each classifier was sequentially trained using EEG fea-
tures alone, clinical features alone and finally a combina-
tion of EEG and clinical features.

We then trained RF classifiers independently on each 
etiology subgroup ("specific classifiers"). Because of the 
limited number of subjects in each subgroup, we omitted 
a separate test set and used instead fivefold cross-valida-
tion on all available data.

For each classification task, 500 trees with a maximal 
depth of ⌊m/2⌋ , where m is the number of incorporated 
features, were trained using the AdaBoost algorithm [39] 
with a learning rate of 0.1. Because RF, as most classifica-
tion algorithms, tends to be biased toward the majority 
class, we used a weighted approach to penalize misclassi-
fying the minority class [40], whereby class weights were 
1/relative frequencies. All parameters were defined prior 
to analysis and were not optimized on data.

We assessed the performance of the RF classifiers 
with areas under the receiving operating characteristics 
(ROC) curve (AUC). The 95% confidence intervals of 
ROC curves and corresponding AUC values were deter-
mined via 3000 bootstrapped replicas. For the general 
classifier, we also computed accuracy, sensitivity, specific-
ity, positive predictive value and negative predictive value 
with their binomial 95% confidence  intervals. Statistical 
significance of differences between AUCs was assessed 
with a Z test [41]

RF classifiers were implemented in MATLAB version 
2015b (MathWorks) using the function fitensemble from 
the Statistics and Machine Learning Toolbox. Unless 
stated otherwise, parameters were set to their default 
values.

Results
Patients
A total of 364 patients (34% women, mean age 
64 ± 15  years) for whom the outcome at 6  month was 
known were included, of which 187 (51%) survived, and 
139 (38%) had a favorable outcome (for details about the 
inclusion and drop-out see [32]). The detailed number of 
patients in each etiological category is shown in Table 2.

Performance of the general classifiers
The detailed performances of the general classifiers 
(trained on patients with all etiologies) are presented 

Table 2  Etiology and outcome distribution

EEG delay time between admission and EEG (in hours), HIE hypoxic–ischemic encephalopathy, MIII metabolic, intoxication, infection, inflammation, TBI traumatic brain 
injury, TBI/NS traumatic brain injury and other non-traumatic non-vascular neurosurgical diagnosis

Etiology N Age [IQR] Female (%) Survival (%) Favorable outcome 
(%)

EEG delay [IQR]

Stroke 82 67 [55 78] 41 (50.0) 37 (45.1) 21 (25.6) 69 [37 122]

TBI/NS 50 63 [40 73] 13 (26.0) 33 (66.0) 24 (48.0) 75 [43 115]

TBI 44 63 [40 73] 12 (27.3) 30 (68.2) 21 (47.7) 71 [43 112]

MIII 47 62 [51 73] 14 (29.8) 26 (55.3) 22 (46.8) 139 [48 268]

HIE 110 66 [54 75] 30 (27.3) 42 (38.2) 34 (30.9) 24 [17 52]

No etiology available at 
recruitment time

75 68 [59 77] 25 (33.3) 49 (65.3) 38 (50.7) 101 [33 192]

All 364 67 [55 75] 123 (33.8) 187 (51.4) 139 (38.2) 59 [24 138]
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Table 3  Performance of the general classifiers for predicting survival at 6 months or for predicting a favorable outcome 
(CPC 1 or 2) using different features. Point estimates and 95% confidence intervals

AUC​ Accuracy Sensitivity Specificity PPV NPV

Predicting survival

 EEG features .812 .736 .833 .639 .694 .796

[.721 .874] [.657 .814] [.739 .928] [.519 .760] [.588 .801] [.683 .909]

 Clinical features .643 .596 .617 .574 .587 .603

[.535 .737] [.508 .683] [.494 .740] [.450 .698] [.466 .709] [.478 .729]

 All features .806 .752 .717 .787 .768 .739

[.721 .871] [.675 .829] [.603 .831] [.684 .890] [.657 .878] [.632 .845]

Predicting

Favorable outcome

 EEG features .790 .703 .848 .613 .574 .868

[.693 .862] [.621 .784] [.744 .952] [.503 .724] [.456 .691] [.777 .959]

 Clinical features .641 .628 .587 .653 .509 .721

[.537 .736] [.542 .714] [.445 .729] [.546 .761] [.375 .644] [.614 .827]

 All features .777 .703 .565 .787 .619 .747

[.687 .852] [.621 .784] [.422 .709] [.694 .879] [.472 .766] [.651 .843]

Fig. 1  Receiver operating characteristic curves (black) with 95% confidence intervals (gray) of the general models obtained on the test set (121 
patients)
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in Table  3, whereas ROC curves are shown in Fig.  1. 
Using EEG features, the area under the ROC curve was 
0.812 for predicting survival and 0.790 for predicting 
favorable outcome. The prediction using the EEG fea-
tures alone was more accurate than with clinical fea-
tures alone for both outcomes (p = 0.008 for survival, 
p = 0.031 for favorable outcome). A combination of 
both sets of features did not improve the performance 
compared to EEG features alone (p = 0.984 for sur-
vival, p = 0.887 for favorable outcome).

Our relatively large test set allowed for a subanalysis 
of the performance of the general classifier depending 
on the etiology, whereby only EEG features were used 
(Table  4). The prediction performance was better for 
the subgroups of patients with TBI/NS (including the 
subgroup with pure TBI) or HIE than for patients with 
stroke or with metabolic, inflammatory, infectious ori-
gin of consciousness impairment. The between group 
difference of AUC values was statistically significant 
for predicting survival (p < 0.05 for HIE-Stroke, HIE-
MIII, TBI/NS-Stroke, TBI/NS-MIII).

Figure  2 illustrates the relative importance of the 
different features in the general classifiers. EEG back-
ground reactivity was the most important electroen-
cephalographic feature for both outcomes. The most 
important clinical features were Glasgow coma score 
(closely followed by age) for predicting survival, and 
the age for predicting a favorable vs. unfavorable out-
come. Of note, reactivity remained the main EEG fea-
ture when both electroencephalographic and clinical 
features were used.

Performance of the specific classifiers
Specific classifiers were then trained independently on 
subgroups of patients with related etiologic category 
based on EEG features alone and using fivefold cross-val-
idation. The performances of the specific classifiers were 
systematically lower than those of the general classifier 
on patients from the same etiology (Table  4). The drop 
in performance was statistically significant for the TBI/
NS and HIE subgroups for predicting survival (p = 0.004 
and p = 0.037, respectively) and for the MIII subgroup for 
predicting a favorable outcome (p = 0.010).

The relative importance of the single EEG features in 
the different etiological groups is presented in Fig. 3 for 
predicting survival and in Fig. 4 for predicting favorable 
outcome. Of note, EEG background reactivity was the 
most important feature only in the subgroups of TBI/
neurosurgery patients, as well as in the subgroup of 
patients for which the etiology was not known.

Discussion
We used electroencephalographic and clinical features 
to predict the outcome in critically ill patients with acute 
consciousness impairment using a random forest classi-
fier. The main result of our study is that despite training 
the classifier on a cohort of patients with different ACI 
etiologies, an AUC of 0.812 for predicting survival based 
on EEG features was achieved.

So far, only a minority of studies on EEG-based 
prognostication were conducted on patients with dif-
ferent etiologies of coma or ACI. EEG background reac-
tivity, for instance, has been shown repetitively to be 
an important predictor in almost all groups of patients 
(HIE, TBI, toxic-metabolic; for reviews see [19, 42]). 

Table 4  Performance of the general classifier (that is, trained on patients with all etiologies) and of the specific classifiers 
(independently trained on  subgroups of  specific etiology) for  predicting outcome in  subgroup of  different etiologies 
using EEG features. AUC and 95% confidence intervals

HIE hypoxic–ischemic encephalopathy, MIII metabolic, intoxication, infection, inflammation, TBI traumatic brain injury, TBI/NS traumatic brain injury combined with 
other non-vascular non-traumatic neurosurgical diagnoses

Stroke TBI/NS TBI MIII HIE No etiology

Predicting survival

General classifier .695 .955 .944 .697 .958 .737

[.433 .878] [.734 1.000] [.628 1.000] [.423 .894] [.827 .996] [.442 .936]

Specific classifiers .666 .694 .800 .452 .833 .646

[.534 .769] [.469 .851] [.571 .907] [.290 .628] [.741 .902] [.488 .775]

Predicting

Favorable outcome

 General classifier .706 .819 .866 .742 .921 .678

[.474 .880] [.472 .972] [.500 1.000] [.475 .909] [.762 .979] [.404 .876]

 Specific classifiers .662 .651 .723 .396 .865 .652

[.510 .776] [.480 .803] [.547 .851] [.240 .568] [.781 .923] [.512 .765]
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Several pre-defined EEG patterns were used to predict 
outcome in patients with global (HIE) and focal (hemi-
spheric infarct) ischemic lesions [27]. A combination of 
EEG reactivity and presence of sleep spindles predicted 
1-month awakening in patients in coma for at least 3 days 
[28]. Presence of at least a unilateral posterior dominant 
rhythm was associated with survival in patients admit-
ted to a neurologic intensive care unit for various diag-
noses [43]. Also quantitative analysis has been applied to 
patients with various etiology of coma: a combination of 
different synchronization measures was shown to predict 
survival at discharge from the ICU [29]; amplitude inte-
grated EEG applied during 6–12 h one week after brain 
injury (including TBI and stroke) onset could successfully 
predict functional outcome [30]. Taken together, these 

and our results seem to indicate that similar EEG criteria 
can be applied for outcome prediction regardless of the 
etiology of ACI/coma.

The performance of the classifier trained on all eti-
ologies was especially good in the subgroup of patients 
with HIE, which was expected, but also in patients with 
TBI (isolated, or grouped with patients with other non-
traumatic non-vascular neurosurgical diagnoses). Our 
results are in line with previous studies showing that 
EEG has a potential role in prognostication in TBI [18, 
18], despite the fact that EEG is not routinely used as a 
prognostic tool in this condition [3]. In comparison, 
the performance was lower in the subgroups of patients 
with toxic, metabolic, inflammatory or infections origin. 
This group contains the largest proportion of patients 

Fig. 2  Relative importance of features in the general models (that is, after training on patients with all etiologies) for three different feature sets and 
two different outcomes. GCS: Glasgow coma scale; CRP: C-reactive protein; Main term 2: presence of rhythmic or periodic patterns

(See figure on next page.)
Fig. 3  Relative importance of features in the specific models (each trained on a specific etiology group) for predicting survival. Bars represent the 
mean; error bars represent the standard error of the mean for the 5 models trained during cross-validation. Main term 2: presence of rhythmic or 
periodic patterns. HIE hypoxic–ischemic encephalopathy, MIII metabolic, intoxication, infection, inflammation, TBI traumatic brain injury, TBI/NS 
traumatic brain injury combined with other non-vascular non-traumatic neurosurgical diagnoses
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Fig. 4  Relative importance of features in the specific models (that is, trained on a specific etiology group) for predicting favorable outcome. Bars 
represent the mean; error bars represent the standard error of the mean for the 5 models trained during cross-validation. Main term 2: presence of 
rhythmic or periodic patterns. Abbreviations as in Fig. 3



Page 10 of 13Müller et al. Crit Care          (2020) 24:680 

with non-primary cerebral disorders; this heterogene-
ity might explain why a prognostic tool based on electric 
brain activity does not perform well. It is also known that 
relatively moderate metabolic encephalopathy can dra-
matically modify the EEG, and that several EEG patterns 
usually associated with a poor outcome, such as burst 
suppression or suppressed background, can be found 
even in reversible metabolic encephalopathies [44]. The 
performance was also lower in case of stroke. This could 
be due to the features chosen for this study, as only the 
presence, but not the severity of an asymmetry, was con-
sidered. Previous studies have shown that the degree of 
asymmetry is an important predictor for the functional 
outcome after stroke [45, 46].

Using clinical and demographic variables in addition to 
EEG features did not change the overall classification per-
formance (AUC 0.812 vs. 0.806). However, this increased 
the specificity and decreased the sensitivity for predicting 
survival or a favorable outcome (Table 3). One can pos-
tulate that a "good" EEG is a necessary but not sufficient 
condition for guaranteeing a good outcome, and that rul-
ing out other known predictors of poor outcome (such as 
a higher age) helps increasing the specificity for survival.

General versus specific classifiers
Training the classifiers on subgroups of patients with 
similar etiologies led to poorer performances. How-
ever, it is important to note that in the present study, 
using more homogeneous subgroups also meant using 
less data: the training set for the general classifiers com-
prised 242 patients (1/3 of all patients), whereas for the 
specific classifiers the size of the training set was between 
38 (for MIII) and 88 (for HIE) for each cross-validation 
run (4/5 of patients with a given etiology). It is known 
that a smaller training set increases the risk of overfit-
ting and leads to poorer performance [47]. Overfitting 
could explain part of the large variation in relative feature 
importance observed when changing the outcome and 
etiologies in the specific classifiers (Figs.  3, 4), whereas 
the unique combination of features from the general 
model was better for practically all subgroups. Our 
results suggest thus that using a larger training set, even 
at the cost of reducing the homogeneity of the group, 
can ultimately increase the performance of an EEG-
based classifier. This is an important observation in an 
era where computer-assisted medicine is growing, but 
available data are often insufficient for modern machine 
learning methods—due to the cost of data labeling, and 
because data sharing between organizations is limited 
in practice [48]. Whether the same principle applies to 
other EEG-based clinical settings (such as the detection 
of epileptiform activity in various types of epilepsies, for 
instance) remains to be confirmed.

Importance of EEG reactivity
When considering all patients together, EEG background 
reactivity (EEG-R) was the most important EEG feature, 
both for predicting survival and favorable functional 
outcome. EEG-R has been extensively used for prognos-
tication in several etiologies [19, 42] and is thought to 
require functioning spino-thalamic and thalamo-cortical 
afferences [42]; it has been shown to correlate with neu-
ron-specific enolase (a biomarker for neural lesion) [49] 
and topography of MRI lesions [50] in patients with HIE. 
Interestingly, EEG-R was no longer the most important 
feature when classifiers were trained specifically on sub-
groups of patients with similar etiology, except for the 
TBI/NS group (for which we can postulate that a known 
marker for the integrity of afferent pathways is a good 
predictor). Reactivity was also the most important feature 
in the subgroup of patients for whom the diagnosis was 
unknown at the time of the EEG, possibly due to the fact 
that this group was probably also very heterogeneous.

It might seem surprising that reactivity was not the 
most important feature for HIE, since it has been shown 
in numerous studies to be a good predictor for this con-
dition. This can be due to the correlation of EEG-R with 
amplitude and continuity (both important features in 
this subgroup): since a suppressed background is usu-
ally not reactive, EEG-R is unlikely to be chosen as split-
ting variable in a sub-branch of a decision tree under a 
splitting node describing a flat line. We also note the 
importance of periodic or rhythmic pattern (Main term 
2). Usually, the appearance or modification of periodic 
pattern or rhythmic spike waves following stimulus [51] 
is not considered background reactivity and can compli-
cate the detection of true background reactivity. In sum-
mary, EEG-R could appear as being less important than it 
would if used in isolation due to its correlation with other 
variables and how this affects the RF algorithm.

EEG-R was not one of the most relevant features for 
the MIII subgroup. As already mentioned, the MIII group 
contains a larger proportion of patients with non-pri-
marily cerebral cause for consciousness impairment. For 
these patients, probing the integrity of afferent pathways 
is less informative, in particular considering the fact that 
reactivity is often present, and thus less discriminative.

Strengths and limitations
EEG and clinical data have been prospectively acquired 
in the course of a large multicentric study. EEG feature 
scoring has been performed by experienced encepha-
lographers with by additional certification in ACNS 
terminology, which has been validated and offers good 
interrater agreement [52]. However, our study has several 
limitations. First, the decision to perform an EEG was 
taken by treating physicians based on clinical criteria. As 
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such, there is a selection bias, since patients for whom a 
decision to withdraw life supporting therapy was already 
made, or patients who were quickly improving, were not 
included. Also, the timing of EEG after onset of con-
sciousness impairment was not consistent between all 
patients. However, patient selection and timing of EEG 
correspond to "real-world" situations where an EEG is 
considered relevant by the treating physician. Of note, 
most HIE patients from the hospitals in Lausanne, Bern 
and Sion were recorded early after cardiac arrest (dur-
ing targeted temperature management), since they were 
also included in an observational registry [6]. It is diffi-
cult to estimate how these selection biases influence the 
performance of the classifiers. It is possible, for instance, 
that a model trained on more systematically acquired 
data would lead to better results. By design of the CERTA 
study, no patient with known seizures in the previ-
ous 36  h or status epilepticus in the previous 90  h was 
included, which constitutes another selection bias. This 
bias is the reason why we did not include the presence 
of an electroencephalographic seizure as feature in our 
models. In case of known seizures, however, the response 
to anti-seizure medication is the main prognostic feature, 
and not the other ACNS criteria. As previously published 
[32], about 10% of patients in the present cohort (4.4% 
in those undergoing routine EEG, 15.7% in the group 
with continuous EEG) had ictal or interictal epilepti-
form activity during at least one EEG recording; while 
these patients were not excluded from the analysis, these 
numbers correspond to a recent meta-analysis of avail-
able cohort studies [53] and thus in our view reinforce 
generalizability of our findings. Also, we did not account 
for potential preexisting disability, which could affect the 
best CPC.

Self-fulfilling prophecy is a potential risk in all prog-
nostication studies, especially in retrospective studies 
in which the decision for withdrawal of life supporting 
treatment (WLST) was left to the treating physician and 
not explicitly documented. However, EEG plays a decisive 
role in WLST decision mainly in patients with HIE. The 
majority of patients with HIE were recruited in Lausanne 
and Bern, where according to current guidelines, the first 
EEG (the one used for analysis in the present study) is 
usually not considered for decision to WLST [6, 54]. In 
patients with other etiologies, EEG is not a primary tool 
for clinical prognostication; therefore, the risk of self-ful-
filling prophecy is probably limited.

Finally, the choice of clinical features was limited by 
the data registered during the CERTA study. Due to the 
lack of neuroradiological data, the complementarity of 
neuroradiological and electroencephalographic features 
could not be investigated. Also, we decided to consider a 
single blood test; the results might have been better with 

more blood markers, or after selection of the clinical val-
ues with a univariate or multivariate assessment. Of note, 
CRP levels have been shown to be correlated with the 
outcome in several etiologies, in particular in sepsis [55] 
and intracerebral hemorrhage [56].

Conclusion
Currently, the role of EEG as a prognostic tool for criti-
cally ill patients with consciousness impairment strongly 
diverges based on the underlying etiology (major role in 
HIE, limited in TBI). In the same way that MRI and com-
puter-tomography are now progressively incorporated 
into decision-making in HIE [50, 57, 58], this and other 
studies support the fundamental role of EEG as a prog-
nostic tool for patients with TBI and possibly other etiol-
ogies. Further studies are needed to confirm the value of 
EEG and providing scoring system applicable in practice 
in patients with non-hypoxic etiology of coma.
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