
 

EEG-based Outcome Prediction after Cardiac Arrest with 

Convolutional Neural Networks: Performance and Visualization of 

Discriminative Features 
 

Running title: Deep learning for coma-EEG 
 
Authors: Stefan Jonas1, Andrea O Rossetti2, Mauro Oddo3, Simon Jenni1, Paolo 

Favaro1, Frederic Zubler4,* 

 

1. Computer Vision Group, Department of Computer Science, University of Bern, 
Switzerland 
2. Department of Neurology, University Hospital (CHUV) & University of Lausanne, 
Switzerland. 
3. Department of Intensive Care Medicine, University Hospital (CHUV) & University 
of Lausanne, Switzerland. 
4. Department of Neurology, Inselspital, Bern University Hospital, University of 
Bern, Switzerland. 
 
Corresponding Author (*) 
Frederic Zubler, MD, PhD 
Sleep-Wake-Epilepsy-Center 
Department of Neurology  
Bern University Hospital - Inselspital Bern  
Freiburgstrasse 4 
3010 Bern 
Switzerland 
E-mail: frederic.zubler@gmail.com 
 

Acknowledgments: FZ was supported by the Baasch-Medicus Foundation. The 
Swiss National Foundations provided financial support to AOR (CR3213_143780) 
and to MO (32003B_155957). The funding sources had no part in the analysis or 
decision to publish. The authors thank Jan Novy, MD PhD, Christine Stähli, RN, and 
Laura Pezzi, RN, for their help in data assessment. None of the authors has a conflict 
of interest to declare. 
 

Data availability statement: EEG data sharing is not authorized by the local ethical 
committee. 
 

 

s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
3
4
8
4
5
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
7
.
1
2
.
2
0
2
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/245916744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract 
 
Prognostication for comatose patients after cardiac arrest is a difficult but essential 

task. Currently, visual interpretation of electroencephalogram (EEG) is one of the 

main modality used in outcome prediction. There is a growing interest in computer 

assisted EEG interpretation, either to overcome the possible subjectivity of visual 

interpretation, or to identify complex features of the EEG signal. We used a 1-

dimensional Convolutional Neural Network (CNN) to predict functional outcome 

based on 19-channel-EEG recorded from 267 adult comatose patients during targeted 

temperature management after CA. The area under the receiver operating 

characteristic curve (AUC) on the test set was 0.885. Interestingly, model architecture 

and fine-tuning only played a marginal role in classification performance. We then 

used gradient-weighted Class Activation Mapping (Grad-CAM) as visualization 

technique to identify which EEG features were used by the network to classify an 

EEG epoch as favorable or unfavorable outcome, and also to understand failures of 

the network. Grad-CAM showed that the network relied on similar features than 

classical visual analysis for predicting unfavorable outcome (suppressed background, 

epileptiform transients). This study confirms that CNNs are promising models for 

EEG-based prognostication in comatose patients, and that Grad-CAM can provide 

explanation for the models’ decision-making, which is of utmost importance for 

future use of deep learning models in a clinical setting. 
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1. Introduction 

 
Prognostication of comatose patients with hypoxic-ischemic encephalopathy (HIE) 

after cardiac arrest (CA) is one of the most challenging tasks faced by Neurologists 

and Neuro-intensivists on the Intensive Care Unit [Rossetti et al., 2016]. Early, 

reliable identification of patients without potential to recover from coma, or with the 

risk to develop severe neurological disabilities, is of paramount importance in order to 

inform relatives and to avoid inappropriate continuation of life-supporting treatments 

[Sandroni et al., 2014]. Currently, prognostication is based on multimodal approaches 

combining clinical and paraclinical examinations [Rossetti, 2017; Sandroni et al., 

2018]. One of the most important modality is the electroencephalogram (EEG) 

[Thenayan et al., 2010; Hofmeijer et al., 2015; Rossetti et al., 2016; Westhall et al., 

2016; Rossetti, 2017; Backman et al., 2018; Sandroni et al., 2018]. In clinical 

practice, EEG analysis is performed visually by a trained electroencephalographer 

based on relatively few criteria [Hirsch et al., 2013]. Several EEG patterns have been 

shown to be associated with either unfavorable outcome (e.g. suppressed background, 

burst-suppression - especially if showing identical bursts, epileptiform activity) or 

favorable outcome (continuous background, background reactivity) [Hofmeijer et al., 

2015; Westhall et al., 2016]. Quantitative (computer-based) methods have been 

proposed, either to perform as surrogate electroencephalographers [Tjepkema-

Cloostermans et al., 2017], to increase precision and speed of interpretation 

[Rundgren et al., 2010; Ruijter et al., 2015; Ruijter et al., 2018], or to detect EEG 

features not easily recognizable by human eye [Beudel et al., 2014; Zubler et al., 

2017; Pfeiffer et al., 2018]. Most quantitative approaches are “feature engineered”, 

meaning that an algorithm was explicitly designed to detect or quantify pre-defined 

features of the EEG signal such as amplitude, frequency spectrum, presence of spiky 

elements, and linear or non-linear interactions between the channels [Zubler et al., 

2016]. The practical advantage of this approach is also its major limitation, namely 

that it benefits and depends from the knowledge accumulated over decades by 

neurophysiologists. However, experienced human interpreters still perform better than 

specific algorithms, possibly because humans rely on a robustly acquired pattern-

recognition ability that is not easy to translate into explicit algorithms [Tjepkema-

Cloostermans et al., 2018]. 



To overcome these limitations, neurophysiologist have begun to use machine-learning 

techinques, especially deep learning (DL). The practical advantage of DL is that it 

provides an automated pipeline of “feature extraction” followed by classification, 

whereby the algorithm itself (and not the programmer) defines which features of the 

signal are relevant for an accurate classification [LeCun et al., 2015]. In particular, 

convolutional neural networks (CNNs) - a certain type of DL network loosely 

inspired by the animal visual system, in which connections between (convolutional) 

layers are made by sliding filters across the input data -  have been demonstrated to be 

extremely efficient for analyzing images [Krizhevsky et al., 2012]. CNNs and other 

DL architectures have been applied to EEG data, either for clinical applications such 

as scoring of sleep stages [Biswal et al., 2018], detection of focal epileptiform 

discharges [Johansen et al., 2016; Tjepkema-Cloostermans et al., 2018], detection of 

“abnormality” or “pathologies” in clinical EEGs [Schirrmeister et al., 2017a; van 

Leeuwen et al., 2019], or for brain-computer-interfaces [Carvalho et al., 2017; 

Schirrmeister et al., 2017b; Lawhern et al., 2018]. Two recent studies used CNNs for 

prognostication in comatose patients after CA. In the first, a relatively simple network 

was applied to raw EEG data and reached very good discriminative performance in 

predicting the functional outcome of patients [van Putten et al., 2018a]. In the second, 

different networks were applied to EEG power spectra, with slightly less good 

performance [Ghassemi, 2018].  

 

While the success of DL for healthcare application seems promising [Faust et al., 

2018], one major limitation is likely to hinder its acceptance by clinicians and patients 

organizations, namely its lack of interpretability [Doshi-Velez and Kim, 2017]. 

Indeed, it is often difficult to identify which specific features of the input data were 

influential for a given classification decision. In the last years, several techniques 

have been developed to explain the decision-making process in CNNs. Some of these 

have already been applied to EEG-data. One approach is to look at the convolutional 

filters and their correlation with the different EEG-channels [Lawhern et al., 2018]. 

Another is to use the network in the reverse direction in order to generate a typical 

input sample for a given class [van Putten et al., 2018b]. A third approach is to 

produce a so-called class activation map (CAM,  [Zhou et al., 2016]), a sort of “heat 

map” highlighting regions that support the classification into specific categories. 

CAMs have been applied to EEG data for instance to assess the effect of exercise on 



brain function [Ghosh et al., 2018].  In the context of EEG-based prognostication, this 

method should allow identifying which features were used by the network to classify 

an EEG pattern as suggestive for a favorable or unfavorable outcome. 

  

Here, we designed a CNN to predict the clinical outcome in comatose patients after 

CA based on EEG recorded in the very early phase (during targeted temperature 

management). The first goal of the present study is to confirm the findings of [van 

Putten et al., 2018a] on another prospectively acquired cohort of patients. The second 

and equally important goal is to apply a visualization algorithm to identify the EEG 

features learnt by the network. For this objective, we use Grad-CAM [Selvaraju et al., 

2017], a specific CAM implementation. We demonstrate how the model’s 

classification decisions, the grad-CAM results and the EEG row traces can be 

combined in order to identify EEG features learned by the network for preforming 

prognostication. Finally, we analyze different mechanisms leading to 

misclassification. This last point is especially important in prognostication for 

comatose patients, as false classifications can have dramatic consequences.    

 

2. Materials and Methods 

 
2.1 Patients and treatment 

 

EEGs were recorded at the University Hospital of Lausanne (CHUV) and were part of 

prospectively acquired cohort of comatose patients after cardiac arrest (CA). Details 

of the recruitment and treatment have been described elsewhere [Rossetti et al., 2010; 

Rossetti et al., 2017]. The study was approved by the ethic commission of Canton of 

Vaud (Number 16/13); a waiver of consent was granted since EEG is part of the 

clinical work-up. In this study, we included all comatose patients following 

resuscitation after CA who survived beyond 24 hours after admission and who 

underwent an EEG during targeted temperature management (TTM) between 

September 2012 and April 2018. At the beginning of the recruitment period, TTM 

consisted of therapeutic hypothermia at 33°C; starting from December 2014 

hypothermia was gradually replaced by controlled normothermia at 36°C, which 

became the standard treatment in June 2016. TTM was started immediately on 



admission with ice packs and ice-cold infusions and then with a surface cooling 

device during 24 hours. During that time, patients were given sedation and analgesia 

with propofol (4mg/kg/h), midazolam (0.1 mg/kg/h) or fentanyl (1.5 ug/kg/h) and 

myorelaxant in case of shivering. Decision to withdraw support was taken after at 

least 72h, based on the presence of at least two of the following: Unreactive EEG 

background after TTM, treatment-resistant myoclonus or electrographic status 

epilepticus, bilateral absence of somatosensory-evoked potentials, and absence of at 

least one of the following brainstem reflexes at 72 hours, off sedation: pupillary, 

oculocephalic or corneal [Rossetti et al., 2010]. 

 

The clinical outcome was prospectively assessed at 3 months using semi-structured 

interviews with the Cerebral Performance Category (CPC) [Booth et al., 2004]. A 

CPC value of 1 (no deficit) or 2 (minor deficits) was considered as favorable 

outcome; a CPC value of 3 (severe deficits), 4 (vegetative state) or 5 (death) was 

considered an unfavorable outcome.  

 

Patients were randomly split into a training/validation set (80%) and a test set (20%); 

patients in the training/validation set were then randomly assigned to the training 

(80%) or the validation (20%) set. 

 

2.2 Data acquisition and presentation 

 

EEG Recordings were performed for 20 minutes with 19 electrodes according to the 

international 10-20 system, with a reference placed next to Fpz. Initials EEG 

recordings were at 250 Hz (occasionally 1000 Hz), and were down-sampled to 50 Hz 

(after low-pass filtering). In addition, we applied a high-pass filter with cutoff 

frequency of 0.5 Hz to eliminate DC-shifts and low frequency artifacts. The quality of 

each EEG, especially the presence of electromyographic artifacts, were assessed post-

hoc by a certified electroencephalographer (F.Z.) as described in [Zubler et al., 2017]. 

 

For each patient we considered the first 5 minutes of EEG without artifacts and in 

absence of external stimuli. These 5-minute recordings were decomposed into 

segments of (initially) 10 seconds without overlap called epochs, which were 

presented to the model independently. The input consisted thus of epochs of raw EEG 



data presented as a 19 x 500 array (representing the voltage in µV recorded at 19 

channels during 10 seconds at 50Hz). However, the input was not considered as 2-

dimensional images, but as a 1-dimensional (1-D) image with 19 different “color” 

channels (at the first convolutional layer, every filter consisted of 19 channel-specific 

1-D kernels, which were convolved independently with their corresponding channels 

before summation, so that already after the first convolutional layer the channel-

specific information was mixed). The motivation to use a 1-D representation was to 

avoid the introduction of an arbitrary neighboring relationship between the different 

channels (for instance, the channel Fp1 was not a priori “closer” to F8 or Fp2 than it 

was to any other channel). 

 

2.2 Deep learning architecture 

 

We implemented a 1-D convolutional neural network. The architecture was inspired 

by the VGG network [Simonyan and Zisserman, 2015]. VGG is a widely used 

architecture, which has shown great performance in image classification. In its 

original description, VGGNet consists of several ‘blocks’, each block having 2 to 3 

convolutional layers consecutively stacked before max-pooling is applied. At the end, 

there are two hidden fully connected layers with 4096 neurons, before the final output 

layer. This architecture is extremely deep and carries an extremely large amount of 

parameters in the order of fifty million. That makes it at risk of overfitting, especially 

when the training set is limited, and requires the use of a graphics processing unit for 

training.  

 

For these reasons, we considered a simplified version of VGG, consisting of a 

reduced number of ‘blocks’, each one having two successive convolutional layers 

before max-pooling, and only one fully-connected hidden layer with fewer neurons. 

The final output layer consisted of a single sigmoid neuron, representing the 

probability for unfavorable outcome for the patient from which the EEG epoch was 

recorded. The model was optimized using the Adam learning algorithm [Kingma and 

Ba, 2014] minimizing the binary cross-entropy loss function. We refer to this model 

as t-VGG (“tiny-VGG”). The final model specifications are presented in Table 1. 

 



Each EEG epoch was classified independently, that is, the model assigned a 

probability for unfavorable clinical outcome to each epoch. The probability for an 

entire EEG was obtained by averaging the probabilities of all its epochs. We then 

classified the entire EEG as unfavorable outcome if the average probability reached a 

given threshold, and as favorable outcome if the averaged probability stayed below 

that threshold. During model optimization, the threshold was moved to produce a 

receiver operating characteristic curve (ROC-curve). For the final model evaluation, 

the threshold was set to 50%. 

 

2.3 Model fine-tuning and hyperparameters 

 

Our model was optimized on the validation set with respect to hyperparameters 

(segment length and overlap, length and number of filters, number of hidden neurons) 

and model components (number of layers, regularization). The performance was 

assessed with the area under the ROC-curve (AUC).  

    

2.4 Training and implementation 

 

Training was performed on a CUDA enabled nVidia GTX. Mini-batches contained 

128 EEG segments. Early stopping was performed when training accuracy reached 

90% to prevent overfitting. 

 

The models were implemented in Python using the open source deep-learning 

framework Keras [Chollet and others, 2015] with a TensorFlow backend.  

 

2.5 Visualization 

 

Gradient-weighted class activation mapping (Grad-CAM): To visualize features 

associated with a specific outcome we implemented the Grad-CAM [Selvaraju et al., 

2017] algorithm. Here, a heatmap is created from the last convolutional layer to 

highlight specific regions of the EEG segments which supported the classification as 

unfavorable outcome (Class 1). The algorithm was applied to the last convolutional 

layer, that is, at the highest level in the hierarchy before the temporal aspects of the 

data are deconstructed in the all-to-all penultimate layer [Selvaraju et al., 2017; Zhou 



et al., 2016]. The resolution of the heatmap is determined by the size of the feature 

maps from the last convolutional layer. As suggested in the original publication, 

Grad-CAM can also be used to highlight so-called “counterfactual explanations”, 

namely regions that if removed, could change the network’s classification. We use 

this approach to highlight regions supportive of a classification as favorable outcome 

(Class 0).  

Global Average Pooling (GAP):  Since Grad-CAM is applied to the last convolutional 

layer, it does not incorporate the computation performed by the last layer (the fully-

connected hidden layer), and thus may not be entirely representative of the features 

supporting the network’s decision. To better identify single regions supporting a 

decision, we trained a so-called global average pooling (GAP [Zhou et al., 2016]) 

model, that is, a model similar to our final t-VGG model but lacking the hidden fully-

connected layer. The GAP network was used only for our visualization task and was 

not further optimized. By putting more emphasis on the convolutional layers, more of 

the overall computation was performed by the network prior to or at the layer probed 

by Grad-CAM.  

 

2.6 Training with physiological sleep 

 

In an attempt to help the network to better recognize “benign” EEG patterns, we 

retrained the final t-VGG network from scratch with an additional dataset of 16 sleep 

EEGs added to the training set (with the label “favorable outcome”). These EEGs 

were recorded during Non-Rapid-Eye-Movement (NREM) sleep in non-comatose 

subjects (150 seconds during sleep stage NREM-2 and 150 seconds during NREM-3 

per subject).  

 

3. Results 

 
3.1 Patients 

 

303 patients had an EEG during TTM during the recruitment period; 36 patients (12 

with favorable outcome) were excluded because of (mainly muscle) artifacts on the 

EEG, resulting in 267 patients (70 females) being analyzed in the present study. Their 



mean age (± SD) was 62.0 (± 14.9) years. The mean latency of EEG recording was 

20.3 (± 6.1) hours after CA; 127 patients had favorable (Class 0), and 140 patients 

unfavorable outcome (Class 1) at three months (of which 118 died). The patients’ 

demographics are shown in Table 2.  

 

3.2 Parameter tuning 

 

Different model parameters were evaluated on the validation set. The two first 

parameters were the epoch length and overlap. Recordings were split into epochs of 

various durations (4, 10, 20, or 50 seconds), with and without overlap (0%, 50%, 

75%, 90%). The best performance was obtained with an epoch length of 10 seconds 

with 75% overlap. The other parameters tested were the number of hidden neurons in 

the penultimate layer, the number of convolutional blocks, the type of pooling, the 

number of filters in the convolutional layers and filter sizes. For detailed results of the 

exploration of the other parameters, see Supplementary Material. The total number of 

parameters of the final model was 16’401.  

 

3.5 Performance of t-VGG  

 

We merged the original training set and the validation set into a final training set 

containing 213 EEGs, and evaluated the performance of the t-VGG model on the test 

set consisting of 54 EEGs that were never exposed to the model before. The test set 

consisted of EEGs from 27 (50%) patients with favorable and 27 patients with 

unfavorable outcome. The AUC on the test set was 0.885. Detailed results are 

presented in Table 3.  

 

3.7 Visualization for t-VGG network 

 

The gradient-weighted class activation mapping (Grad-CAM) algorithm for 

visualization was applied to EEG epochs from the test set during their classification 

by the optimized t-VGG network. Due to the architecture of the network, the resulting 

heatmap at the last convolutional layer consisted of 26 datapoints, which defined the 

temporal resolution for class-discriminative regions for class 1 (unfavorable outcome) 

and class 0 (favorable outcome). Grad-CAM visualizations for typical EEG epochs 



correctly classified are presented in Figure 1 (unfavorable outcome) and 2 (favorable 

outcome). Grad-CAM visualization for EEG epochs that were misclassified are 

presented in Figure 3.  

 

Suppressed segments (“flat line”) were strongly highlighted by Grad-CAM as class-

discriminative regions for unfavorable outcome (Figure 1ab, Figure 3a). In addition, 

spiky or sharply contoured signals (sharply-contoured generalized periodic pattern, 

Figure 1b; epileptic spikes, Figure 1c) were often highlighted as supporting the 

classification for Class 1. By contrast, very few regions were highlighted by Grad-

CAM as class-discriminative for favorable outcome - even in epochs that were 

attributed a very low probability for unfavorable outcome (Figure 2). In several cases, 

an epoch was classified as favorable outcome without a single region being 

highlighted as discriminative for this particular class (for instance Figure 2b).  

 

3.8 Visualization for the global averaging pooling (GAP) network 

 

To improve the visualization of class-discriminative features in EEG data, we 

implemented a global average pooling version of the optimized t-VGG network. As 

consequence of it lacking one layer, the number of parameters (13’265) of the GAP 

model was 19% lower than that of the original model. The performance of the GAP 

model was equal or slightly better than that of the original model on the test set (Table 

3). On the validation set, however, performances of the GAP network were slightly 

lower than that of t-VGG (see Supplementary Material).   

 

The main observation when applying the Grad-CAM algorithm to the GAP network 

was that many more regions of the EEG epochs classified as class 0 (favorable 

outcome) were highlighted as discriminative for this class (compare Figure 4a-c with 

Figure 2a-c). In particular, monomorphic theta rhythms with postero-anterior 

amplitude gradient were particular class-discriminative for favorable outcome; one 

representative example is visible in Figure 4b. By contrast, when the visualization 

algorithm was applied to epochs classified as class 1 (unfavorable outcome) by the 

GAP network, the results were usually not very different from the visualization 

applied to the t-VGG network. In particular, flat regions were still discriminative for 

this class. In a few cases, however, specific local features were more strongly 



highlighted by the GAP than by the original model (compare for instance the second 

discharge in Figure 1b and in Figure 4d).  

 

3.9 Learning physiological sleep patterns 

 

The t-VGG network was then trained on the final training set augmented with 

examples of physiological non-REM sleep and evaluated on the test set (Table 3). 

Compared to training without sleep, the AUC was similar, whereas the accuracy for a 

threshold at 50% probability was slightly reduced. Interestingly, the sensitivity for 

unfavorable outcome increased whereas the specificity was reduced. We applied 

Grad-CAM to this new model. In most cases, the visualizations did not show clear 

differences in discriminative regions between training with and without sleep EEGs 

When present, delta-waves were sometimes highlighted as discriminative for 

favorable outcome, whereas sleep-spindles were not.  

 

3.10 Comparison with other deep learning models 

 

We compared the performance of our network on the test set with that of other 

successful previously published 1-D and 2-D models (adapted to our sampling rate, 

see Supplementary Material). As first, we implemented a 1-D version of VGG16. 

This architecture is the “deepest” and has by far the largest number of parameters. 

The second architecture was the revised EEGNet [Lawhern et al., 2018], a 

convolutional network specifically developed for EEG-based movement decoding in 

the context of brain-computer interfaces. It is characterized by special 2-D 

convolutional operations (such as depthwise or separable convolutions) and was 

designed to be compact. The third model is DeepConvNet [Schirrmeister et al., 

2017b], a 2-D convolutional network used for EEG decoding. The last model is the 

one proposed by [van Putten et al., 2018a], which was also applied to EEG-based 

prognostication after CA. It consists of a single convolutional layer (256 feature 

maps), one hidden layer (128 neurons) and one final output layer. This is the 

shallowest of all models considered. However, it has more parameters than our model. 

Detailed results are presented in Table 3. We note that all models showed very similar 

performance on the test set. 



4. Discussion 
 

In this work we implemented a convolutional neural network (t-VGG) for EEG-based 

prognostication in comatose patients after CA. It consists of three blocks, each 

containing two sequential convolutional layers and one max-pooling layer, followed 

by a final hidden fully-connected layer and one decision neuron. Our model was 

applied to EEG recorded at the early phase, during targeted temperature management, 

however during a relatively large time window (between 9 and 30 hours after CA). 

When tested on new data, the AUC of our model was 0.885. This performance is 

comparable to the one obtained by [van Putten et al., 2018a] on EEGs recorded at a 

fixed time after CA with a shallower 2-dimensional convolutional network (AUC of 

0.89 at 12h after CA, and 0.76 at 24h after CA).   

 

The performance of t-VGG was comparable or exceeded that of other quantitative or 

clinical approaches previously applied to (smaller, but more homogeneous) parts of 

the same cohort. For instance, a Bayesian classifier based on 8 pre-determined 

quantitative EEG features (various bivariate synchronization measures) reached a 

AUC of 0.81 [Zubler et al., 2017]. A clinical multimodal prognostication approach 

combining visual EEG features, somatosensory evoked potentials, brainstem reflexes 

and neuron specific enolase also reached an AUC of 0.81 for predicting unfavorable 

outcome [Tsetsou et al., 2018]. Our results thus confirm that CNNs applied to raw 

EEG data are a valuable tool for prognostication after CA. 

 

4.1 Does model architecture matter for EEG data? 

 

We compared our model to other previously published models. Even though the 

models differ greatly in their architecture specification, such as the number of 

parameters (ranging from 989 to 42 million), layers (from 1 to 13 convolutional 

layers) and structure (1-D or 2-D input representation), all achieved relatively good 

and similar performance. Besides, our model and the one taken from [van Putten et 

al., 2018a] were developed for this specific task, whereas EEGNet and DeepConvNet 

have been designed and optimized for brain-computer-interfaces. Furthermore, the 

increase in performance in our model during architecture selection and fine-tuning 



was only 3.1% (AUC) on the validation set. These observations raise the question 

whether CNN model architecture plays as strong a role for EEG analysis as it does for 

image processing. The low dependency of model performance on hyperparameter 

values is reassuring in the optic of future clinical applications, as it suggests good 

generalization across datasets. Furthermore, as suggested by Schirrmeister et al. 

[Schirrmeister et al., 2017a], we can postulate that models optimized for one specific 

EEG-based task could also perform well on other EEG-based classification, which is 

of advantage, since training data sets are usually sparse. On the other hand, we cannot 

exclude that we might observe more significant differences between the models with 

a much larger training data set.    

 

4.2 Lessons from Grad-CAM visualization 

 

We used the Grad-CAM algorithm in order to identify EEG features discriminative 

for favorable or unfavorable outcome. We recall that these features were not specified 

ahead of time, but were recognized by the network during training for their 

association with a specific outcome. Interestingly, the network learned some of the 

features used by clinicians when visually interpreting an EEG. In particular, 

suppressed regions, which are often associated with an unfavorable outcome, were 

recognized as such [Hofmeijer et al., 2015; Westhall et al., 2016]. Also epileptiform 

transients, which are usually considered as relative markers for unfavorable outcome 

[Hofmeijer et al., 2015; Westhall et al., 2016] were often discriminative for this class. 

By contrast, epileptic seizures were not systematically recognized as predictor for 

unfavorable outcome (for instance Figure 3c) - this is probably due to the limited 

number of seizures present in the training set, and to the non-stationarity of the EEG 

signal during a seizure, which makes the learning more difficult.  

 

Very few regions were class-discriminative for favorable outcome in the t-VGG 

network, even when the epoch was classified as favorable. In a sense, this also bares 

resemblance with visual analysis, in that EEGs are often considered benign in the 

absence of malignant features (absence of discontinuity, absence of periodic pattern, 

absence of epileptiform activity [Hofmeijer et al., 2015; Westhall et al., 2016]). If the 

absence of malignant feature was a criteria for our network, this cannot be attributed 

to one specific region. EEG background variability is another EEG feature associated 



with favorable outcome [Efthymiou et al., 2017] which can not be attributed to a 

specific location of the EEG. Background variability might have been used as 

discriminant feature by the network at the level of the all-to-all layer, however, this 

point cannot be investigated with the Grad-CAM algorithm (perturbation of the input 

signal [Becker et al., 2018] could be a complementary approach to test this 

hypothesis). Finally, background reactivity (that is, modification of the traces in 

response to a stimulus) is a classical marker for favorable outcome that cannot be 

recognized by this particular model, because external stimuli were not incorporated to 

the input data.  

 

It is standard practice to incorporate one or two all-to-all layers at the end of 

convolutional networks. Since all-to-all layers combine information from the previous 

layers, the spatial ordering (in the context of time series such as EEG: the temporal 

ordering) is lost, which explains why the Grad-CAM algorithm is not immediately 

applicable. Using Grad-CAM at the last convolutional layer provides interesting 

insights but does not take into account the computation performed higher in the 

hierarchy. For this reason, we implemented a GAP network to replace the all-to-all 

layer. Not only does this improve the Grad-CAM visualization, but it also enforces 

the computation to rely more on local EEG features. As immediate consequence, 

more EEG regions were highlighted as class-discriminative for favorable outcome. In 

particular, we often observed that monomorphic theta rhythmic activity with higher 

amplitude in the posterior channels became class-discriminative for favorable 

outcome (Figure 3b). Rhythmic theta activity [Synek, 1988] has been previously 

described as suggestive of a favorable outcome (by contrast, a postero-anterior 

amplitude gradient has not yet been validated as isolated predictor, even though it has 

been proposed a condition for “benign” EEG pattern [Westhall et al., 2016]). In 

addition to facilitating visualization, the overall performance of the GAP network was 

not inferior than that of the t-VGG.  

 

4.3 Analyzing errors 

 

In order to gain enough confidence in a method to be able to use it in a clinical 

setting, it is of paramount importance to know its limitations. This includes analyzing 

in detail, which epochs were misclassified, and trying to understand why. The epoch 



displayed in Figure 3a was falsely classified as poor outcome, whereas the patient 

survived. Grad-CAM confirmed that mainly the suppressed regions were supporting 

the incorrect classification. The reason for the error becomes clear when we note that 

the EEG was recorded very early (13h after CA). It is well known that in the very 

acute phase or under sedation a burst-suppression pattern is not always associated 

with an unfavorable outcome [Caporro et al., 2019; Cloostermans et al., 2012]. Using 

EEG recorded at a later stage might help solve this particular problem. The false 

positive error presented in Figure 3b is due to another mechanism: an experienced 

encephalographer would have recognized transients with triphasic appearence, which 

are potentially caused by metabolic disturbances and not due to a severe 

hypoxic/anoxic encephalopathy. There were very few triphasic transients on the 

training set (this pattern appears rarely in the acute phase), which explains the 

misclassification.    

 

Some of the false negatives can also be explained by looking at the raw EEG data: 

The EEG epoch represented in Fig 3c consists of (part of ) an epileptic seizure. As 

stated previously, seizures were rare in our collective in the early phase, so that the 

network had few examples to learn this pattern and associate it with a poor outcome. 

As for the EEG reproduced in Fig 3d, it would probably have been classified a 

favorable outcome by a clinician as well. Accordingly, the patient first regained 

consciousness, but died 7 days later after transfer to another hospital.  

 

4.4 Influencing learning 

 

When interpreting the EEG of a comatose patient, clinicians do not only rely on 

previously seen coma-EEG, but also evoke their longtime acquired experience with 

EEG recordings in other conditions. In the context of prognostication after CA, 

clinicians might for instance recognize the presence of typical patterns of non-rapid 

eye movement (NREM) sleep, which can be suggestive of a favorable outcome for 

patients in the Intensive Care Unit [Murray et al., 2009; Sandsmark et al., 2016]. We 

wanted to determine whether the performance of the network could be improved by 

teaching it to recognize elements of sleep stage NREM-2 (sleep-spindles or K-

complexes) or NREM 3 (rhythmic delta activity). Our motivation was to increase the 

specificity for unfavorable outcome, since false positive errors have more dramatic 



consequences than false negative errors when it comes to deciding on withdrawal of 

life-supporting treatment. However, the opposite occurred: The sensitivity for 

unfavorable outcome increased, whereas the specificity decreased. One can postulate 

that training the network with EEG epochs from non-comatose subjects introduced a 

bias in the model’s representation of favorable coma-EEGs. Grad-CAM showed that 

after training with sleep, delta-wave were more highlighted as class-discriminative for 

favorable outcome, whereas it was not the case for sleep-spindles. One possible 

explanation for this discrepancy is the different frequency of these elements (NREM 

sleep contains numerically more delta waves than spindles). However, changes in the 

class activation maps did not always correlate with changes in the classification.  

 

4.5 Strengths and Limitations 

 

In this paper, we used data from a well-characterized and prospectively acquired 

cohort. We used EEG obtained during the early phase (during TTM), because these 

recordings were not taken into account for decision to withdraw life-supporting 

treatment. As such, the risk of self-fulfilling prophecy appears low. We analyzed and 

presented in detail the correlation between the model decisions, the visualization and 

the raw EEG data – a step that is unfortunately often neglected, but of importance to 

investigate the capabilities and limitations of deep learning models in a clinical 

setting. 

 

 Using a 1-D Convolutional Neural Network instead of a 2-D does not seem to affect 

performance (Table 3). However, this restricts the use of Grad-CAM to the temporal 

dimension, and does not allow channel-specific feature visualization. This limitation 

might be only of mild relevance for coma EEG, since the patterns are usually 

homogenous, at least symmetrical. For other applications, such as focal epileptic 

activity, a 2-D visualization might be necessary. The variable time delay at which 

EEG was recorded is another potential limitation, since EEG-patterns can vary in the 

first 30h. On the other hand, the fact that our model performs well despite a relatively 

large time-window of recording gives us confidence for an application in the real-

world. An additional issue is the size of the dataset: Deep Learning models can 

usually reach their best accuracies with very large datasets. Whether this also applies 

to EEG-based classifications and whether the performance would improve with more 



training samples, remains to be investigated. Finally, our model incorporates EEG 

data and not other modalities, such as clinical information, somatosensory evoked 

potentials, biological markers and MRI findings. Future implementations could 

include such data, for instance as additional unit in the fully connected layer [van 

Leeuwen et al., 2019].  

 

5. Conclusion  
 

Deep Learning (DL) has proven to be very successful for classification tasks in a wide 

range of applications. There is growing evidence that DL can be potentially useful for 

clinical applications. However, DL has not been yet incorporated into standard 

decision-making procedures. Our results show that class activation maps can provide 

visual interpretations for classification based on time-series such as EEG. It is our 

opinion that future work on DL and EEG should not only aim at improving 

performance, but also model interpretability. This last point will prove essential if DL 

is to be entrusted in the near future for contributing to clinical decision. Moreover, 

gaining a better understanding of the type of patterns used by a network when 

evaluating an EEG might help us to identify new types of patterns, which might later 

even be included into visual analysis.  
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Tables  

 

Block Layer Description 
1 Input 1-D input of 10s long EEG epochs 

 
1-D Convolution 16 filters, kernel length 3, stride 1 

 
BatchNormalization 

 
 

Activation ReLU 

 
1-D Convolution 16 filters, kernel length 3, stride 1 

 
BatchNormalization 

 
 

Activation ReLU 

 
Max-Pooling pool size 4, stride 4 

   2 1-D Convolution 32 filters, kernel length 3, stride 1 

 
BatchNormalization 

 
 

Activation ReLU 

 
1-D Convolution 32 filters, kernel length 3, stride 1 

 
BatchNormalization 

 
 

Activation ReLU 

 
Max-Pooling pool size 4, stride 4 

   
   3 1-D Convolution 32 filters, kernel length 3, stride 1 

 
BatchNormalization 

 
 

Activation ReLU 

 
1-D Convolution 32 filters, kernel length 3, stride 1 

 
BatchNormalization 

 
 

Activation ReLU activation 

 
Max-Pooling pool size 4, stride 4 

   
   Classification Flatten 

 
 

Dense 16 neurons, L2 regularization λ=0.01 

 
BatchNormalization 

 
 

Activation ReLU 

 
Dropout drop probability 50% 

 
Dense 1 output neuron 

 
Activation Sigmoid 

 
Table 1: t-VGG architecture. The 1-D model consists of 3 blocks, each containing 2 

sequential convolutional layers before max-pooling is applied. The output layer is a 

single sigmoid neuron representing the probability of unfavorable outcome. The 

implementation code is provided in the Supplementary Material.  



 

Favorable 
outcome 

Unfavorable 
outcome p 

    N 127 140 n.a. 
Female 30 (24%) 40 (29%) 0.358 
Age (±SD) [y] 59.5 (± 15.1) 64.3 (±14.4) 0.011 
Cardiac etiology 114 (90%) 90 (64%) <0.001 
Asystole or pulseless electrical 
activity on site 26 (20%) 87 (62%) <0.001 
Therapeutic hypothermia (33° C) 54 (43%) 37 (26%) 0.006 

    Latency of EEG recording (±SD) [h] 19.7 (±5.4) 20.9 (±7.6) 0.11 
Disontinuous EEG background 45 (0.35%) 18 (19%) < 0.001 
Areactive EEG background 8 (6%) 84 (60%) < 0.001 
Irritative EEG 2 (2%) 44 (31%) < 0.001 

    Patients sedated with propofol 41 (32%)  33 (24%) 0.112 
Propofol dosis (±SD) [mg/kg/h] 1.92 (±1.1) 1.97 (±1.2) 0.961 
Patients sedated with midazolam 67 (53%) 42 (30%) <0.001 
Midazolam dosis (±SD) [mg/kg/h] 0.12 (±0.05) 0.12 (±0.04) 0.806 
Patients sedated with fentanyl 40 (31%) 29 (21%) 0.044 
Fentanyl dosis(±SD) [mg/kg/h] 1.38 (±0.9) 1.03 (±0.57) 0.069 
 
 

Table 2: Patients demographics. Differences between groups were assessed with 

Mann-Whitney-U tests for numerical values and with Chi-square tests for categorical 

data.  

  



 

Model AUC [95% CI] 
EEG Epoch 
Accuracy 

Entire EEG 
Accuracy Sensitivity Specificity Parameters 

t-VGG 0.885 [0.779 - 0.964] 78.73% 83.33% 77.77% 88.88%        16'401  
t-VGG GAP 0.900 [0.805 - 0.976] 79.78% 87.04% 85.18% 88.88%        13'265  
t-VGG trained with 
Sleep 0.881 [0.773 - 0.963] 77.73% 81.48% 81.48% 81.48%        16'401  

1D-VGG 0.880 [0.782 - 0.963] 75.65% 81.48% 81.48% 81.48%  42'721'473  
EEGNet, adjusted 0.849 [0.733 - 0.947] 76.74% 79.63% 74.07% 85.18% 989 
DeepConvNet, adjusted 0.866 [0.758 - 0.953] 78.79% 79.63% 74.07% 85.18% 98'401 
[van Putten et al., 
2018a], adjusted 0.857 [0.738 - 0.954] 76.11% 79.63% 77.77% 81.48% 1'225'729 

 

 

Table 3: Final performance. Performance of the model(s) trained on the training and 

validation set, and tested on the 54 patients of the test set. AUC : area under the 

receiver operating characteristic curve for whole EEGs. Epoch accuracy: percentage 

of EEG epochs (10-second segments) predicting the correct clinical outcome 

(threshold for predicting unfavorable outcome was set to 50%); Entire EEG accuracy: 

percentage of EEGs predicting the correct outcome based on averaged probability of 

all epochs it contains (threshold set to 50%). The sensitivity and specificity are toward 

prediction of unfavorable outcome. For description of the models see text.  

  



Figure Legends 
 

 
Figure 1: Grad-CAM visual explanation for EEG epochs correctly classified as 
unfavorable outcome (true positives for unfavorable outcomes) by the t-VGG 
network. For each example, the figure displays a 10-second EEG epoch in a pseudo-
monopolar montage (vertical thick bar = 100 uV) together with its corresponding 
class activation maps for unfavorable outcome (Class 1) and favorable outcome 
(Class 0). Each map contains 26 data points, corresponding to 26 temporal regions of 
the EEG epoch (duration of one region = 385 ms). The lighter the color, the stronger a 
region is discriminative for a particular class. (a) EEG of a 75y female, treated with 
controlled normothermia (CNT), recorded 22 h after CA, with unfavorable outcome 
(CPC 5). The probability for unfavorable outcome attributed by the network was 
maximal (P=1.0). The EEG showed a continuously suppressed background without 
superimposed periodic pattern. Most of the temporal regions were marked as 
supporting the classification for unfavorable outcome. No temporal region was 
supporting the classification for favorable outcome. (b) EEG of a 65y male, CNT, 
recorded 10h after CA, CPC 5, P =1.0: The EEG showed a suppressed background 
with superimposed sharply-contoured pseudo-periodic generalized discharges. The 
suppressed segments longer than 2 seconds, and to a lesser extent two of the 
generalized discharges (the ones with a “poly-spike” configuration,*) were class-
discriminative for unfavorable outcome; the third discharge (°) and an after coming 
segment were discriminative for favorable outcome. (c) EEG of a 70y female, CNT, 
recorded 21h after CA, CPC 5, P = 0.99: The EEG showed a delta/theta continuous 
background with abundant epileptic spikes. The majority (*), but not all, of the spikes  
were within or next to regions strongly discriminative for unfavorable outcome. (d) 
EEG of a 44y female, CNT, recorded 20.5 h after CA, CPC 5, P = 0.60: The EEG 
epoch showed initially interictal epileptic discharges, and after 6 seconds the begin of 
an electroencephalographic seizure. Mainly the “descending” segments of discharges, 
with superimposed fast activity, supported the classification for unfavorable outcome.  
 
 



 

Figure 2: Grad-CAM visual explanation for EEG epochs correctly classified as 
favorable outcome (true negatives for unfavorable outcome) by the t-VGG network. 
For interpretation of the color bars see caption of Figure 1. Despite the EEG epochs 
being correctly recognized as a favorable pattern, only very few of the single temporal 
regions were marked by the Grad-CAM algorithm as class-discriminative for 
favorable outcome. (a) EEG of a 85y male, treated with controlled normothermia 
(CNT), recorded 24h after CA, who recovered without deficits (CPC 1). The 
probability attributed by the network for an unfavorable outcome was low (P = 0.08). 
The EEG showed a continuous theta background with physiological antero-posterior 
gradient. (b) 82y male, CNT, recorded 22h after CA, CPC 1, P =0.08. Delta-
background with superposition of spindle-shaped theta-activity. (c) EEG of a 46y 
female, treated with therapeutic hypothermia, recorded 24h after CA, CPC 1, P=0.01. 
Diffuse theta and alpha activity modulated by single delta-wave (K-complex-like). (d) 
EEG of a 65y male, CNT, recorded 20h after CA, CPC 1, P = 0.08: Theta and alpha 
activity with isolated delta-waves followed by faster activity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3: Grad-CAM visual explanation for EEG epochs that were misclassified by 
the t-VGG network (a, b: false positives; c, d: false negatives for unfavorable 
outcome). For interpretation of the color bars see caption of Figure 1. (a) EEG of a 
56y male, treated with therapeutic hypothermia, recorded 13h after CA. The patient 
recovered without deficits (CPC1), however the network attributed a high probability 
for unfavorable outcome (P=0.98): The EEG shows a burst-suppression (with not 
highly epileptiform bursts). Suppression regions were class-discriminative for 
unfavorable outcome. (b) EEG of a 65y male, treated with controlled normothermia 
(CNT), recorded 30h after CA, who recovered with minor deficits (CPC 2). The 
network attributed a slightly higher probability for unfavorable outcome (P=0.58). On 
the EEG we observed irregular theta background with so-called triphasic waves, a 
typical finding in case of metabolic encephalopathy (boxes). Slower signal 
components (delta waves) were discriminative for unfavorable outcome. (c) Same 
patient than in Figure 1c, other EEG epoch. Despite the patient having an unfavorable 
outcome, the probability attributed for unfavorable outcome was relatively low (P = 
0.26). This EEG epoch was registered at the end of an epileptic seizure. (d) 57y 
female, CNT, recorded 22h after CA, CPC 5, P = 0.01. The EEG showed a variable 
and continuous theta/alpha background, suggesting a mild hypoxic-anoxic 
encephalopathy. The patient indeed awoke, but died one week later.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure 4: Visual explanation for EEG epochs correctly classified by the global 
averaging pooling (GAP) network. For interpretation of the color bars see caption of 
Figure 1. (a, b, c) Same EEG epochs than in Figures 2abc. The GAP model correctly 
attributed low probability for unfavorable outcome to these three epochs (probability 
of 0.02, 0.06, and 0.01 respectively). Much more temporal regions were class-
discriminative for favorable outcome than for the model with all-to-all penultimate 
layer, in particular segments with monomorphic theta rhythms with postero-anterior 
amplitude gradient (see boxes; signals from the right temporal electrode chain are 
included for illustrative purposes only). (d) Same EEG epoch as in Figure 1d. The 
probability for unfavorable outcome was correctly estimated as being very high (P = 
1.0). With the GAP architecture, the second sharply configured discharge (°) and its 
immediate surrounding became the most discriminative regions for unfavorable 
outcome.  
 
 
 


