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A B S T R A C T   

Visual interpretation of electroencephalography (EEG) is time consuming, may lack objectivity, and is restricted 
to features detectable by a human. Computer-based approaches, especially deep learning, could potentially 
overcome these limitations. However, most deep learning studies focus on a specific question or a single pa-
thology. Here we explore the potential of deep learning for EEG-based diagnostic and prognostic assessment of 
patients with acute consciousness impairment (ACI) of various etiologies. EEGs from 358 adults from a ran-
domized controlled trial (CERTA, NCT03129438) were retrospectively analyzed. A convolutional neural network 
was used to predict the clinical outcome (based either on survival or on best cerebral performance category) and 
to determine the etiology (four diagnostic categories). The largest probability output served as marker for the 
confidence of the network in its prediction (“certainty factor”); we also systematically compared the predictions 
with raw EEG data, and used a visualization algorithm (Grad-CAM) to highlight discriminative patterns. When all 
patients were considered, the area under the receiver operating characteristic curve (AUC) was 0.721 for pre-
dicting survival and 0.703 for predicting the outcome based on best CPC; for patients with certainty factor ≥ 60 
% the AUCs increased to 0.776 and 0.755 respectively; and for certainty factor ≥ 75 % to 0.852 and 0.879. The 
accuracy for predicting the etiology was 54.5 %; the accuracy increased to 67.7 %, 70.3 % and 84.1 % for pa-
tients with certainty factor of 50 %, 60 % and 75 % respectively. Visual analysis showed that the network learnt 
EEG patterns typically recognized by human experts, and suggested new criteria. This work demonstrates for the 
first time the potential of deep learning-based EEG analysis in critically ill patients with various etiologies of ACI. 
Certainty factor and post-hoc correlation of input data with prediction help to better characterize the method and 
pave the route for future implementations in clinical routine.   

1. Introduction 

Acute consciousness impairment (ACI) represents a particular chal-
lenging condition for neurologists and intensive medicine specialists. 
Caregivers try to identify the underlying etiology in order to implement 
specific treatments (Edlow et al., 2014; Traub and Wijdicks, 2016); in 
case of delayed recoveries, there is need to estimate the chances that the 
patient will recover (Ramos et al., 2020; Sandroni et al., 2018). Both 
diagnostic and prognostic assessments are based on multimodal ap-
proaches (Edlow et al., 2014; Rossetti et al., 2016). Because EEG reflects 

the functioning of brain neurons - the activity of which is necessarily 
perturbed in case of impaired consciousness - it appears suitable for 
diagnostic and prognostic tool regardless of the underlying etiology 
(Sutter et al., 2015; Young, 2000). In practice, however, the diagnostic 
role of EEG in critically ill patients is essentially limited to detecting non- 
convulsive status epilepticus or delayed vasospasm (Claassen et al., 
2013), whereas as prognostic tool it is mainly used in post hypoxic/ 
ischemic encephalopathy (HIE) (Nolan et al., 2021). The limited use of 
EEG is partly due to the progresses of neuro-imaging, but also to the 
methods of interpretation. Currently, EEGs are still visually analyzed by 

* Corresponding author at: Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital, Bern University Hospital, Freiburgstrasse 10, 3010 Bern, 
Switzerland. 

E-mail address: frederic.zubler@gmail.com (F. Zubler).  

Contents lists available at ScienceDirect 

NeuroImage: Clinical 

journal homepage: www.elsevier.com/locate/ynicl 

https://doi.org/10.1016/j.nicl.2022.103167 
Received 20 January 2022; Received in revised form 16 June 2022; Accepted 22 August 2022   

mailto:frederic.zubler@gmail.com
www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2022.103167
https://doi.org/10.1016/j.nicl.2022.103167
https://doi.org/10.1016/j.nicl.2022.103167
http://creativecommons.org/licenses/by/4.0/


NeuroImage: Clinical 36 (2022) 103167

2

trained neurophysiologists. Consequently, many centers have restricted 
access to EEG especially during nights and holidays (Gelisse et al., 
2021). In addition, visual analysis is time-consuming, has limited intra- 
and inter-rate agreements (Arends et al., 2017; Benbadis et al., 2009; 
Jing et al., 2019), and is inherently restricted to features recognized by 
humans (Meyer et al., 2021; Tjepkema-Cloostermans et al., 2013). 

Computer-based analysis has been proposed to circumvent these 
limitations (Zubler et al., 2016; Gemein et al., 2020). Deep learning (DL) 
appears particularly promising, since it offers the advantage to find out 
by itself which EEG features are relevant for classification (“feature 
extraction”). As such, DL is not limited to instructions provided by 
human experts, and is thus more likely to unravel new important EEG 
characteristics. DL has been successfully used for EEG analysis for brain 
computer interfaces or for specific neurologic or psychiatric conditions 
(for comprehensive reviews see (Craik et al., 2019; Roy et al., 2019)). In 
the context of critical care, EEG has been mainly used for prognostica-
tion in patients with hypoxic-ischemic encephalopathy after cardiac 
arrest (Jonas et al., 2019; Tjepkema-Cloostermans et al., 2019) or with 
epileptiform activity (Zafar et al., 2021). However, all these applications 
are somehow artificial in that only a specific question or a single pa-
thology is considered at the time. While DL performs very well on these 
narrowly defined patient groups, real-word applications will require the 
ability to function on a broader set of (sometimes overlapping) pathol-
ogies and under noisier conditions, and without the need to redesign the 
network architecture before each application. 

Here, we train a DL network on a prospectively acquired cohort of 
critically ill patients with ACI of various etiologies to predict both eti-
ology and outcome. We also set out to quantify the confidence of the 
network in its predictions and to understand the reasons for the decision 
by comparing the predictions of the network with the raw EEG data, 
which represent crucial steps before a potential clinical use in the near 
future. 

2. Material and methods 

2.1. Data acquisition 

Clinical and electroencephalographic data were acquired during the 
multicentric study CERTA (Continuous EEG Randomized Trial in Adults; 
NCT03129438). Details of the study have been published elsewhere 
(Rossetti et al., 2018, 2020). In summary, critically ill patients > 18 y 
with acute consciousness impairment (GCS ≤ 11 or FOUR ≤ 12) of any 
etiology hospitalized on the Intensive or Intermediate Care Units of four 
Swiss hospitals (Lausanne University Hospital/CHUV, Bern University 
Hospital/Inselspital, Basel University Hospital/USB, Sion Hospital) for 
whom an EEG was performed for medical reasons were included. As per 
design of the original study, patients who had electroencephalographic 
or clinical signs for epileptic seizures in the last 36 h or status epilepticus 
in the last 96 h were excluded, along with patients who were in a 
palliative situation. Immediately after inclusion, patients were ran-
domized to undergo either a continuous EEG or two standard (20–30 
min) EEGs. For the present study we only considered the first EEG (or a 
segment during the first 2 h in case of continuous EEG). The original 
study and the present post-hoc analysis were approved by the local ethic 
commissions (Project-ID 2017–00268). 

Video-EEGs were recorded with a NicoletOne system (Viasys Neu-
rocare, Madison WI, USA). Usually, 21 or 23 electrodes according to the 
international 10:20-system were used; however, in neurosurgical pa-
tients, several electrodes could be omitted due to bandages or drainages. 
For the present study we included the largest set of electrodes present in 
all patients, consisting of 9 electrodes placed at positions Fp1/2, T7/8, 
C3/4, O1/2, Cz (the reference electrode was placed near Fpz or Cz 
depending on the hospital). Five minutes in absence of external stimu-
lation were selected. No EEG was excluded because of muscle, ECG, 
blinking or movement artifacts. The original sampling rate was usually 
250 Hz (in some cases 1000 Hz). Prior to analysis the signals were down- 

sampled to 50 Hz and a high pass filter with cut-off frequency of 0.5 Hz 
was applied. 

2.2. Defining prognosis and etiology 

A detailed presentation of the prognostic and diagnostic categories 
can be found in (Müller et al., 2020). In short, we used two different 
binary prognostic categorizations, namely survival vs death at 6 months, 
and favorable vs unfavorable functional outcome based on the Cerebral 
Performance Category (CPC) assessed at 4 weeks and 6 months, whereby 
the best value was used (“best CPC”), and dichotomized into a favorable 
(CPC 1 or 2) or unfavorable outcome (CPC 3–5). For etiology, we used a 
categorization comprising four different diagnostic classes (based on the 
clinical information prospectively collected during the first week after 
inclusion): 1) Stroke: ischemic or hemorrhagic strokes, including non- 
traumatic subarachnoid hemorrhage; 2) TBI: traumatic brain injury 
and other non-vascular neurosurgical conditions; 3) MIII: metabolic 
disturbance, intoxication, infection, or inflammation; 4) HIE: Hypoxic- 
ischemic-encephalopathy after cardiac arrest. In case of multiple etiol-
ogies, the more “severe” condition was chosen (e.g. a patient with both 
HIE and metabolic disturbance was categorized as HIE; two patients 
with two equally severe conditions from different categories were 
excluded). Patients for whom the etiology was not known during the 
first week after inclusion were excluded from the diagnostic prediction. 

2.3. Deep learning pipeline and network architecture 

We used the t-VGG GAP architecture described in (Jonas et al., 
2019). Hyper-parameters were not optimized for the present study. The 
1D-CNN network consisted of three blocks, each containing two con-
volutional layers and one max-pooling layer, followed by a global 
average pooling layer and an output layer. The output layer consisted of 
a single neuron (with sigmoid activation function) when predicting the 
outcome; it consisted of four neurons (with softmax activation function) 
when predicting the etiology. The input was one-dimensional, corre-
sponding to the voltage in µV for a 10-second epoch, with nine channels 
(1 × 500 × 9). Each EEG was decomposed into 10-second epochs with 
75 % overlap, which were presented independently to the network; the 
overall prediction for one EEG patient was obtained by averaging the 
prediction of all its epochs. We performed a stratified 5-fold cross- 
validation to ensure that no patient was classified by a network it hel-
ped training, using each time 80 % of the patients for training the 
network and the remaining 20 % as the test group. Each fold contained 
the same percentage of each class. For training, we used the Adam 
optimizer to minimize the cross-entropy loss function. The DL network 
was implemented in Python using the Keras framework (https://keras. 
io) v2.3.1; the code is provided as Supplementary Material. 

2.4. Model output and certainty factor 

When predicting the prognosis, the value of the final output neuron 
encoded the predicted probability p for survival or for favorable 
outcome. Accordingly, the probability for death or unfavorable outcome 
was 1-p. The cutoff to make a binary prediction was set at p = 0.5. We 
introduced the certainty factor, defined as the maximum class probability 
max(p, 1-p), as a straightforward way to estimate the confidence of the 
network in its own prediction. When predicting the etiology, the output 
was a four-dimensional vector (p1, p2, p3, p4) encoding the probability 
distribution over all four diagnostic groups. Similarly, we defined the 
certainty factor as maxi(pi). For both tasks we computed the detailed 
performance for all patients, as well as for the subgroups of patients 
classified with a certainty factor ≥ 0.6 and ≥ 0.75 (without retraining 
the network). 
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2.5. Explainability 

Two different methods were used to explain a posteriori the decisions 
taken by the network. First, we analyzed visually all EEGs containing 
epochs classified (correctly or not) with a certainty factor ≥ 0.9. We 
restricted the analysis to the outcome classification based on best CPC. 
Second, we used the so-called Gradient-weighted Class Activation 
Mapping (Grad-CAM) algorithm (Selvaraju et al., 2017). This method 
quantifies how the classification result would be affected if different 
temporal segments within an epoch were to be modified, indicating 
which segments were discriminative for a specific class. For predicting 
the outcome, since the network had a single output neuron, each tem-
poral segment was discriminative for a single class (favorable or unfa-
vorable). For predicting the etiology, since the network had four output 
neurons, thus the same temporal segment could be discriminative for 
more than one class. 

3. Results 

3.1. Patients 

364 patients were recruited, for details see (Rossetti et al., 2020). For 
6 (1.7 %) the EEG could not be exported (missing or corrupted file), 
resulting in the inclusion of 358 patients for the present study (32 % 
female, median age 67 years (interquartile range 55–75), mean age 64 
+/- 15). The etiology of ACI was known in 277 patients. Patients de-
mographics are shown in Table 1. 

3.2. Classification performance 

Outcome Prediction: The detailed performance of the DL network for 
predicting the clinical outcome is presented in Table 2. When consid-
ering all patients (corresponding to a certainty factor of 50 %), the AUC 
was 0.721 for predicting survival and 0.703 for predicting a favorable 
outcome. Restricting analysis to patients for whom the certainty factor 
was at least 60 % increased the AUC to 0.776 for survival and 0.755 for 
favorable outcome; for patients with a certainty factor of at least 75 % 
the AUCs were 0.852 and 0.879, respectively. The performance for other 
values of certainty factors is illustrated in Fig. 1. 

Etiology: The truth table for predicting the etiology is shown in Fig. 2. 
When all patients were considered (certainty factor of 25 %), the correct 
etiology was predicted in 54.4 % of patients; the accuracy was 36.3 % for 
patients with stoke, 46.8 % for TBI, 47.7 % for MIII, 74.5 % for HIE. Here 
also, considering only patients with a higher certainty factor increased 
the accuracy (Table 3). 

3.3. Visual analysis of epochs classified with high confidence 

157 EEGs contained at least one epoch classified with a certainty 
factor of ≥ 0.9, of which 68 were true positives (TP) for favorable 
outcome. In those TP epochs, the background was continuous with a 
single predominant frequency in 40 cases (e.g. Fig. 3A), continuous with 
mixed or alternating frequencies in 20 cases (often with short segments 
of monomorphic rhythmic activity, e.g. Fig. 3BC), discontinuous in 7 
cases. In one case the background could not be characterized because of 

opened eyes. The only rhythmic or periodic patterns (Hirsch et al., 2021) 
were generalized rhythmic delta activity (G-RDA, present in 18 cases; 
Fig. 3C) and generalized periodic triphasic discharges (2 cases). Eye 
blinking artifacts were present in 8 cases. 

Nineteen EEGs contained false positives (FP) with a certainty factor ≥
0.9. The patterns were very similar to those in TP: continuous mono-
morphic rhythmic activity in 10 cases, continuous mixed frequency 
activity in 8 cases; one EEG contained repetitive epileptic seizures, of 
which the epochs at the beginning of the seizures displaying low 
amplitude fast activity were falsely classified as favorable outcome. As 
for TP, several FP epochs contained G-RDA and triphasic discharges. 

Eighty-three EEGs contained true negatives (TN): 20 cases had a 
suppressed background; 9 an attenuated background; 25 a burst- 
suppression (Fig. 3E); 23 a continuous irregular background (often 
with fast on slow activity, whereby the fast activity was of higher 
amplitude than for TP or FP; Fig, 1D), 5 cases were seizures or status 
epilepticus, and one EEG was continuous with sporadic interictal dis-
charges. Rhythmic or periodic patterns found in TN epochs were later-
alized rhythmic delta activity (1 case) and triphasic periodic discharges 
(2 cases). 

Finally, 34 EEGs contained false negatives (FN), which appeared 
similar to those in TN: 2 cases were attenuated background, 5 were 
burst-suppression, 29 irregular continuous background, 3 seizures, 4 
sharply contoured triphasic periodic discharges (Fig. 3F), 4 cases con-
tained large movement artifacts, 3 a high amplitude EMG artifact, and 3 
showed a interhemispheric asymmetry in frequency and/or amplitude. 

Table 1 
Patients demographics. For continuous values median and interquartile range are presented.  

Etiology N Age [years] Female (%) Favorable Outcome (%) Survival (%) EEG delay since admission [h] 

Stroke 80 67 [55 78] 38 (48) 21 (26) 38 (48) 69 [37 122] 
TBI 47 63 [41 74] 12 (26) 21 (45) 30 (64) 75 [43 113] 
MIII 44 64 [54 73] 13 (30) 20 (45) 25 (57) 140 [48 279] 
HIE 106 66 [54 75] 28 (26) 34 (32) 42 (40) 24 [17 49] 
No etiology available at recruitment time 81 68 [58 75] 26 (32) 40 (49) 50 (62)  

102 [34 193] 
All 358 67 [55 75] 117 (33) 136 (38) 185 (52) 60 [24 139]  

Table 2 
Performance of the deep-learning network for predicting the clinical outcome, either 
survival vs death at 6 months, or favorable vs unfavorable outcome (based on 
best CPC). Average and range of five cross-validation trials. (PPV, positive 
predictive value; NPV, negative predictive value).  

Subgroup AUC Accuracy Sensitivity Specificity PPV NPV 

Predicting survival 
all (N =

358) 
0.721 65.1 66.5 63.6 66.2 64.4 
[64.6 
76.8] 

[59.2 
72.2] 

[51.4 
75.7] 

[54.3 
71.4] 

[63.3 
73.0] 

[56.1 
71.4] 

certainty 
factor ≥
60 % (N 
= 249) 

0.776 70.4 72.8 67.8 68.5 72.7 
[67.5 
84.3] 

[63.0 
74.0] 

[65.2 
84.0] 

[59.3 
73.1] 

[62.1 
74.1] 

[64.0 
80.0] 

certainty 
factor ≥
75 % (N 
= 92) 

0.852 
[81.0 
89.1] 

80.0 
[66.7 
85.7] 

71.6 
[57.1 
87.5] 

84.3 
[70.6 
90.9] 

71.6 
[44.4 
88.8] 

84.7 
[80.0 
90.9] 

Predicting favorable outcome 
all (N =

358) 
0.703 63.4 65.5 62.2 52 74.8 
[65.2 
77.7] 

[57.5 
73.2] 

[51.9 
77.8] 

[53.3 
75.0] 

[45.9 
63.3] 

[69.4 
80.5] 

certainty 
factor ≥
60 % (N 
= 238) 

0.755 69.0 70.8 67.6 55.0 81.4 
[68.4 
85.5] 

[62.2 
79.1] 

[46.7 
85.0] 

[59.4 
82.8] 

[43.8 
66.7] 

[72.4 
87.6] 

certainty 
factor ≥
75 % (N 
= 98) 

0.879 
[80.5 
95.2] 

81.6 
[76.5 
90.0] 

85.5 
[66.7 
100] 

81.3 
[73.3 
85.7] 

63.1 
[33.3 
75.0] 

92.2 
[83.3 
100]  
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3.4. Discriminative features for predicting outcome 

GradCAM provided two heat maps for favorable and unfavorable 
outcome (Fig. 3), which confirmed that the EEG patterns observed in 
epochs classified with high certainty were indeed relevant for 

prediction. In particular, posterior dominant rhythm (Fig. 3A), short 
segments of monomorph low amplitude fast activity such as sleep 
spindles (Fig. 3B), or generalized rhythmic delta activity (Fig. 3C), were 
discriminative for favorable outcome. By contrast, polymorphic (espe-
cially theta) activity, mixed frequencies with temporal and spatial het-
erogeneity (including focal slowing) or faster activity of higher 
amplitude superimposed on slow waves were usually discriminative for 
an unfavorable outcome (Fig. 3D). Suppressed segments and epilepti-
form activity were discriminative for unfavorable outcome (Fig. 3E). 
Triphasic waves were associated with unfavorable outcome when fast 
and sharply contoured (Fig. 3F), but could be discriminative for favor-
able outcome when broader and of lower amplitude. Eye blinking arti-
facts were discriminative for favorable, muscle artifact usually for 
unfavorable outcome. In many segments, however, it was not possible 
by inspecting the EEG data to identify the reasons for the Grad-CAM 
result. 

Fig. 1. Performance and number of patients included for different values of certainty factor. (A) AUC (area under the ROC curve) for predicting survival. (B) Ac-
curacy for predicting survival. (C) AUC for predicting favorable outcome. (D) Accuracy for predicting survival. Error bars indicate the range over the 5 cross- 
validation trials. Due to an overrepresentation of mortality and unfavorable outcome in EEGs classified with high certainty factor, the AUC could not be reliably 
computed for a certainty factor > 80 %. 

Fig. 2. Confusion matrix for predicting the etiology. The heatmap values 
represent the relative prediction occurrence of a class when given a true label, i. 
e. the heatmap values sum to one across each row. 

Table 3 
Performance of the deep-learning network for predicting the etiology. Average and 
range of five cross-validation trials.  

Predicting etiology 

Subgroup Accuracy 

all (N = 277) 54.5 
[42.6 73.7] 

certainty factor ≥ 50 % (N = 139) 67.6 
[53.8 76.0] 

certainty factor ≥ 60 % (N = 91) 70.3 
[61.5 75.0] 

certainty factor ≥ 75 % (N = 44) 84.1 
[71.4 100.0]  
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3.5. Discriminative features for predicting etiology 

Grad-CAM provided four maps, one for each diagnostic class (Fig. 4). 
A left–right asymmetry was usually discriminative for stroke (Fig. 4A); 
high amplitude delta activity was often associated to TBI (Fig. 4B); a 
mixed frequency background was usually discriminative either for MIII 
(when of high amplitude, or with triphasic transients) or for HIE 
(Fig. 4CD). Segments with a suppressed background or highly epilepti-
form activity were systematically discriminative for HIE (Fig. 4DF). 
Often, these different elements were found within the same epoch. Here 
also, in many cases it was difficult to understand the reasons for the 
GradCAM results. 

4. Discussion 

In this work we trained a deep-learning network to predict the 
clinical outcome of patients with ACI of various etiologies based on the 
EEG recorded on the intensive or intermediate care unit. The network 
architecture was not optimized for the present study, but taken 

unmodified from a previous study on prognostication in patients with 
HIE (Jonas et al., 2019). When considering all patients, the AUCs were 
slightly above 0.7 for both outcome measures; when restricting the 
analysis to patients with a certainty factor ≥ 60 %, the AUCs increased to 
ca. 0.75, and for a certainty factor ≥ 75 % to over 0.85. 

Most studies using computational methods for EEG-based prognos-
tication in the ICU are conducted on homogeneous groups, typically on 
patients with HIE (Beudel et al., 2014; Tzovara et al., 2016; Zubler et al., 
2017; Tjepkema-Cloostermans et al., 2017, 2019; Jonas et al., 2019; 
Alnes et al., 2021). Only a handful have been conducted on patients with 
impaired consciousness of various etiologies, using predefined visual 
(Müller et al., 2020; Zhang et al., 2011; Vassallo et al., 2021; Kang et al., 
2015; Selioutski et al., 2019) or quantitative (You et al., 2018; Zubler 
et al., 2016) or mixed (Zafar et al., 2021) features. To the best of our 
knowledge, it is the first time that DL is used for this task. 

In a previous work on the same cohort, a mixed approach was taken 
whereby a random forest classifier (RF) was used to predict the clinical 
outcome based on pre-defined EEG features scored visually by human 
experts (Müller et al., 2020). The mixed visual/RF approach reached a 

Fig. 3. EEG features discriminative for favorable or unfavorable outcome. 10-second EEG epochs in reduced (9 electrodes) pseudo-monopolar montage; the scale bar 
represents 100 µV. The two color bars under each EEG indicate the temporal segments recognized by the Grad-CAM algorithm as class-discriminative for favorable 
(upper bar) or unfavorable (lower bar) outcome [arbitrary units]. (A) Well-modulated alpha activity with posterior-anterior gradient discriminative for favorable 
outcome (M, 75y, hypoxic ischemic encephalopathy, CPC 2, predicted probability for favorable outcome (P) 0.98). (B) Rhythmic monomorphic fast activity (sleep 
spindles) discriminative for favorable outcome; in the same epoch a K-complex was slightly discriminative for unfavorable outcome (M, 47, hypoxic ischemic en-
cephalopathy, CPC 1, P 0.98). (C) As illustrated in this example, generalized rhythmic delta activity (G-RDA) was much more suggestive of favorable outcome than 
rhythmic theta activity (M, 77y, delayed awakening after surgery not involving the brain, CPC 2, P 0.90). (D) Diffuse monomorphic theta activity of relatively high 
amplitude, without clear modulation or posterior-anterior gradient, discriminative for unfavorable outcome (F, 56y, ischemic stroke, CPC 5, P 0.07). (e) Suppressed 
segment and epileptiform bursts discriminative for unfavorable outcome; in this particular example the slower and “smooth” parts at the beginning and end of the 
burst were discriminative for favorable outcome. (M, 88y, hypoxic ischemic encephalopathy, CPC 5; P 0.05). (f) Triphasic waves were often predictive for unfa-
vorable outcome, especially when sharply contoured as in this example (F, 55y, subarachnoid hemorrhage, CPC 1, P 0.03 [i.e. false negative]). 
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higher AUC (0.812 for survival, 0.79 for favorable outcome) than the DL 
network when applied to all patients (i.e. irrespective of the certainty 
factor). Several reasons may explain this discrepancy: First, in the visual- 
RF approach, classification was based on the presence of standardized 
visual EEG-features (Hirsch et al., 2013) scored by neurophysiologists 
with specific training for intensive care EEG. Thus, the algorithm relied 
heavily on pre-existing theoretical and practical knowledge gathered by 
experts over many years. By contrast, the DL network learned within few 
minutes based on 246 EEGs (the amount of training data in each of the 5 
cross-validation trials) without any previous knowledge or explicit in-
struction from the programmers. Second, background reactivity was one 
of the features provided to the RF classifier (it became the single most 
important feature for outcome prediction when patients of all etiologies 
were included). The DL network did not benefit from this important clue 
since only EEG recordings without stimulus were used for this study. 
Finally, RF is known to be particularly efficient with small data sets, 
because the risk of overfitting is low. By contrast, since it performs both 

feature extraction and classification, DL is particularly prone to over-
fitting and typically requires larger amount of data (Aellen et al., 2021). 
Conducting a similar analysis using thousands of patients may improve a 
DL-based algorithm performance (Jing et al., 2019; van Leeuwen et al., 
2019). The extreme variability in EEG patterns found in patients with 
various pathologies probably further increases the risk of overfitting. 
Indeed, the same DL architecture performed extremely well when 
applied to a more homogeneous population of patients with HIE (AUC of 
0.90) (Jonas et al., 2019). 

The versatility of DL is illustrated by the fact that the same network 
architecture, with four neurons instead of one in the output layer, could 
be trained to predict the etiology of ACI. When all patients were 
included, the accuracy was of 54 % (at a chance level of 25 %). Even 
though the accuracy increased for subgroups of patients with higher 
certainty factor, the performance might seem limited. However, the task 
was complicated by the overlap in diagnostic categories (for instance, a 
patient with HIE could also have a metabolic disturbance or an infection, 

Fig. 4. EEG features discriminative for specific etiologies. 10-second EEG epochs in reduced (9 electrodes) pseudo-monopolar montage; the scale bar represents 100 µV. 
Color bars indicate the temporal segments discriminative for the four etiology groups: Stroke, traumatic brain injury or other neurosurgical diagnosis (TBI); 
metabolic, intoxication, infectious or inflammatory disorders (MIII); hypoxic-ischemic encephalopathy (HIE) [arbitrary units]. (A) Focal slowing posterior left 
discriminative for stroke (F, 66y, probability for stroke 0.96). (B) High amplitude rhythmic delta waves discriminative for TBI (M, 21y, TBI, probability for TBI 0.90) 
(C) Mixed frequencies of reduced amplitude discriminative for MIII or HIE (M, 75, metabolic encephalopathy, probability for MIII 0.76) (D) Suppressed segments and 
highly epileptiform activity strongly discriminative for HIE (M, 65, HIE, probability for HIE 83 %). (E) Continuous variable background with a few triphasic 
configured transients; the temporal segments were discriminative for MIII and/or HIE (80, F, true diagnostic HIE, probability for MIII 0.76 [i.e. error]). (F) This EEG 
epoch contains features that typically discriminate all four etiologies: The temporal segment with largest left–right asymmetry (between channels T3 and T4 in 
middle of the burst) was discriminative for stroke; the slow delta component of the same burst was discriminative for TBI; the polymorph, non-epileptiform theta 
activity in the second burst was suggestive of MIII; suppressed and polymorph epileptiform segments were strongly discriminative for HIE (M, 65, true diagnostic HIE, 
probability for stroke 0.37, probability for HIE 0.36 [i.e. error]). 
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but only the first category would be considered as correct). More 
importantly, diagnostics based on the sole EEG is a very difficult task. In 
current clinical practice the diagnostic role of EEG is often restricted to 
seizure detection (Herman et al., 2015). A few studies used visual (for 
instance based on the Young scale (Alkhamis and Nazish, 2020)) or 
quantitative (using signal correlation measures (Zubler et al., 2016)) 
analysis for comparing patients with various etiologies at group level, 
however no attempt was made for classification of individual subjects. 

The accuracy was better for HIE than for the other diagnostic cate-
gories. This is not surprising considering that in this pathology the ce-
rebral grey matter is primarily lesioned, that is, the very structure 
producing the EEG signal. Furthermore, some EEG patterns (such as a 
suppressed background) were only found in this category. Finally, it is 
the category with the largest number of patients, so that learning might 
be more robust. 

Artificial intelligence, and DL in particular, has often been used as a 
“black box”. For medical applications, however, trust and explainability 
are of paramount importance (Kundu, 2021; Markus et al., 2021). We 
have addressed these crucial points by introducing the certainty factor 
and by confronting the network decisions with visual analysis. 

The certainty factor, corresponding to the prediction probability 
attributed to the winning class, was used to quantify the network’s trust 
in its own prediction. More complex alternatives exist (Gal and Ghah-
ramani, 2016) and probabilities expressed by modern DL network do not 
usually correspond exactly to real probabilities (Guo et al., 2017). 
Despite its theoretical limitations the certainty factor was clearly related 
to the performance: When all patients were considered (corresponding 
to a certainty of 50 %), prognostication was accurate in about 2/3 of 
cases. By contrast, in the subgroup of patients with a certainty factor ≥
75 %, 4/5 predictions were correct - but the number of predictions that 
could be made was reduced. The same applied for diagnostics. This type 
of reasoning is familiar to clinicians, who are used to distinguish the 
situations where the result of a test is useful, from those where the re-
sults lie in a grey area and do not contribute to the clinical assesment. 

The certainty factor, however, was provided by the network itself, 
and could thus not be used to exclude biases in the training process. 
Moreover, it did not explain on which criteria each particular subject has 
been classified (“explainability”). Therefore, we compared the network 
output with the EEG given as input. Visual examination of epochs 
classified with high confidence confirmed the presence of features used 
also by human specialists, such as a continuous rhythmic background 
(Beuchat et al., 2021; Hofmeijer et al., 2015; Westhall et al., 2016), sleep 
spindles (Vassallo et al., 2021), G-RDA (Beuchat et al., 2021) in epochs 
classified as favorable outcome; or such as suppressed background and 
burst-suppression (Hofmeijer et al., 2015; Ruijter et al., 2019; Westhall 
et al., 2016), or epileptiform activity (Zafar et al., 2021) in epochs 
classified as unfavorable outcome. 

The presence of these typical features in misclassified EEGs can 
explain some of the errors: A suppressed EEG in a patient with favorable 
outcome could be due to sedation, whereas a continuous rhythmic 
background with posterior to anterior gradient would also be recognized 
by a human expert as heralding favorable outcome, even though the 
patient might suffer a later complication. 

Also, eye blinking and movement artifacts were found in epochs 
classified as favorable outcome, which makes sense, since a moving 
patient usually indicates a less deep coma. Incidentally, this is a 
reminder that biological artifacts can contribute to the clinical assess-
ment (Caporro et al., 2019). 

The use of Grad-CAM allowed us to refine our explainability analysis 
by ensuring that not only was a typical pattern present in an epoch, but 
that the time frame when it occurred was important for decision- 
making. Grad-CAM also suggested at least one new diagnostic criteria 
that will have to be confirmed in future studies, namely the relative 
amplitude of superimposed fast on low activity - low amplitude being 
discriminative for favorable (Fig. 3B) and larger amplitude for unfa-
vorable outcome (Fig. 3DE). We and others have already shown that 

Grad-CAM can be used with EEG (Jonas et al., 2019; Li et al., 2020). The 
present study illustrates that Grad-CAM also works for prognostication 
when multiple etiologies are involved, as well as for diagnostic pre-
dictions with non-binary classes. It is important to mention, however, 
that saliency maps methods such as Grad-CAM highlight regions with 
discriminative features, but do not explain why these features are 
discriminative (Ghassemi et al., 2021), so that currently interpretation 
by a expert is still needed. 

DL has become the standard technology for automatic translation, 
fraud detection, self-driving cars. Whether it will play an important role 
in clinical decision-making in the future remains an open a question. 
Besides obvious considerations on cybersecurity and quality of training 
data, the technology would have to become more accessible to medical 
doctors without a computer science background, which means a friendly 
user interface, allowing continuous learning tailored to local conditions, 
but without the need to reprogram the algorithm for each specific sit-
uation. This was our motivation for taking an existing architecture and 
train it using new data without re-optimizing the hyper parameters. 
Explainability will be necessary to inform patients and family and to 
ensure that continuous training is not done on artifacts. Finally, since 
most medical decisions (especially decision to withdraw life supporting 
treatment in comatose patients) are taken using multiple clinical and 
paraclinical modalities, one has to accept that a DL-system using a single 
modality will not reach the extremely high performance seen in other DL- 
applications. However, this does not mean that the information pro-
vided by a DL-based EEG reader could not be useful in a clinical setting, 
once its sensitivity and specificity have been well characterized. For 
instance the pupillary light reflex has a poor sensitivity for predicting 
unfavorable outcome, but can still be very useful when combined with 
other tests (Oddo et al., 2018). A further step would be to integrate these 
different modalities (Moeskops et al., 2016; van Leeuwen et al., 2019). 

Our study has several limitations, most of which derive from the 
design of the original prospective study during which the data was ac-
quired. First, patients with recent status epilepticus or seizures prior to 
enrolment were excluded. Accordingly, we did not incorporate a cate-
gory defined by an epileptic origin of ACI. Other studies have shown that 
DL can be effective in detecting epileptiform activity (Craik et al., 2019; 
Roy et al., 2019). The cohort size is relatively large for prognostication 
studies using intensive care EEGs, but is still relatively low for typical DL 
studies. Self-fulfilling prophecy is a risk in all prognostication studies. 
However, we estimate that this risk was low for the present study since 
we analyzed the first EEG, whereas only the second EEG could be used 
along with several other criteria (listed in (Caporro et al., 2019)) for 
decisions to withdraw life-supporting therapy (WLST) in patients with 
HIE. Moreover, EEG was not used to determine WLST in other etiologies. 
Finally, the definition of diagnostic classes was performed a posteriori, 
and contained very broad categories with clear overlap, such as meta-
bolic disturbance or infection in patients with other categories. 

The strengths of our study are that the data were carefully acquired 
prospectively. Since the decision to perform an EEG was made by 
treating physicians based on clinical considerations only, the population 
is very likely to resemble real-world situations where an EEG interpre-
tation is required (Rossetti et al., 2020). Importantly, we did not exclude 
patients because of the presence of artifacts. Finally, we did not consider 
performance only, but took into account the degree of certainty with 
which a prediction was made, and systematically compared the input 
and the prediction to gain insight in the criteria learnt by the network - 
two aspects which are often neglected in DL studies. 

5. Conclusion 

In this work we applied deep learning to a real-world complex 
clinical problem. We found that after training on a few hundred samples, 
a basic convolutional neural network was capable of interpreting EEGs 
from patients with acute consciousness impairment of various etiologies. 
We showed that the maximum output probability is a simple and 
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efficient way to determine the confidence of the network in its own 
prediction, and that this confidence reflects the accuracy. Finally, we 
confirmed that a saliency map algorithm such as GradCAM was effective 
for EEG, even for non-binary categories. This visualization algorithm 
allows the neurologists and electrophysiologists to verify that the 
network uses legitimate EEG features (and not, for instance, non- 
biological artifact). It also helps explaining errors and limitations of 
the methods, and - possibly - discovering new EEG patterns. The present 
study represents a further step towards future inclusion of DL in clinical 
settings. 
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