11 research outputs found

    Ionenstrahlbasierte Oberflächenmodifizierung von TiAl-Werkstoffen

    Get PDF
    Abstract des Vortrages: Titanium aluminide (TiAl) alloys are attractive lightweight materials for mediumtemperature (500°-750°C) structural applications including components such as jet engine and industrial gas turbine blades, turbocharger rotors and automotive engine valves. However, envisaged service temperatures for future advanced applications will have to be in the range of 750° to 1000°C, over which these alloys suffer from both oxidation and oxygen embrittlement. Therefore, development of surfaceengineering techniques for preventing high-temperature environmental damage is critical in exploiting the advantages of TiAl alloys to their fullest extent. Two efficient approaches to protecting candidate TiAl alloys from high-temperature (>750°C) environmental degradation have been developed at HZDR. The first technique involves a single step, namely treating TiAl alloy components directly by plasma immersion ion implantation (PIII) of fluorine using a mixture of difluoromethane and argon (CH2F2 + 25% Ar) as the precursor gas. The oxidation performance of the fluorine-implanted alloys has been evaluated by thermal gravimetric analysis (TGA) over the temperature range of 750° to 1050°C under conditions of both isothermal and thermal cyclic oxidation in air, and for times as long as 6000 h. This type of surface modification has been shown to produce a stable, adherent and highly protective alumina scale. The second technique involves the fabrication of a durable protective coating in a two-step process, namely formation of a thin aluminum-rich TiAl layer (Ti-60Al) by chemical vapor deposition (CVD) employing a mixture of inorganic precursors, followed by PIII of fluorine. Subsequent long-term oxidation exposures to air at 900°C of a GE 4822 alloy (Ti-48Al-2Cr-2Nb; alloy composition qualified for aerospace applications) have shown that the coating so developed is able to successfully prevent oxidation damage to the base material while maintaining up to 90% of its initial mechanical properties (strength and ductility)

    Overpressurized bubbles versus voids formed in helium implanted annealed silicon

    Get PDF
    The formation of helium induced cavities in silicon is studied as a function of implant energy (10 and 40 keV) and dose (131015, 131016, and 531016 cm22). Specimens are analyzed after annealing (800 °C, 10 min) by transmission electron microscopy (TEM) and elastic recoil detection (ERD). Cavity nucleation and growth phenomena are discussed in terms of three different regimes depending on the implanted He content. For the low (131015 cm22) and high (531016 cm22) doses our results are consistent with the information in the literature. However, at the medium dose (131016 cm22), contrary to the gas release calculations which predict the formation of empty cavities, ERD analysis shows that a measurable fraction of the implanted He is still present in the annealed samples. In this case TEM analyses reveal that the cavities are surrounded by a strong strain field contrast and dislocation loops are generated. The results obtained are discussed on the basis of an alternative nucleation and growth behavior that allows the formation of bubbles in an overpressurized state irrespective of the competition with the gas release process

    Ionenstrahlbasierte Oberflächenmodifizierung von TiAl-Werkstoffen

    Get PDF
    Abstract des Vortrages: Titanium aluminide (TiAl) alloys are attractive lightweight materials for mediumtemperature (500°-750°C) structural applications including components such as jet engine and industrial gas turbine blades, turbocharger rotors and automotive engine valves. However, envisaged service temperatures for future advanced applications will have to be in the range of 750° to 1000°C, over which these alloys suffer from both oxidation and oxygen embrittlement. Therefore, development of surfaceengineering techniques for preventing high-temperature environmental damage is critical in exploiting the advantages of TiAl alloys to their fullest extent. Two efficient approaches to protecting candidate TiAl alloys from high-temperature (>750°C) environmental degradation have been developed at HZDR. The first technique involves a single step, namely treating TiAl alloy components directly by plasma immersion ion implantation (PIII) of fluorine using a mixture of difluoromethane and argon (CH2F2 + 25% Ar) as the precursor gas. The oxidation performance of the fluorine-implanted alloys has been evaluated by thermal gravimetric analysis (TGA) over the temperature range of 750° to 1050°C under conditions of both isothermal and thermal cyclic oxidation in air, and for times as long as 6000 h. This type of surface modification has been shown to produce a stable, adherent and highly protective alumina scale. The second technique involves the fabrication of a durable protective coating in a two-step process, namely formation of a thin aluminum-rich TiAl layer (Ti-60Al) by chemical vapor deposition (CVD) employing a mixture of inorganic precursors, followed by PIII of fluorine. Subsequent long-term oxidation exposures to air at 900°C of a GE 4822 alloy (Ti-48Al-2Cr-2Nb; alloy composition qualified for aerospace applications) have shown that the coating so developed is able to successfully prevent oxidation damage to the base material while maintaining up to 90% of its initial mechanical properties (strength and ductility)

    Ionenstrahlbasierte Oberflächenmodifizierung von TiAl-Werkstoffen

    No full text
    Abstract des Vortrages: Titanium aluminide (TiAl) alloys are attractive lightweight materials for mediumtemperature (500°-750°C) structural applications including components such as jet engine and industrial gas turbine blades, turbocharger rotors and automotive engine valves. However, envisaged service temperatures for future advanced applications will have to be in the range of 750° to 1000°C, over which these alloys suffer from both oxidation and oxygen embrittlement. Therefore, development of surfaceengineering techniques for preventing high-temperature environmental damage is critical in exploiting the advantages of TiAl alloys to their fullest extent. Two efficient approaches to protecting candidate TiAl alloys from high-temperature (>750°C) environmental degradation have been developed at HZDR. The first technique involves a single step, namely treating TiAl alloy components directly by plasma immersion ion implantation (PIII) of fluorine using a mixture of difluoromethane and argon (CH2F2 + 25% Ar) as the precursor gas. The oxidation performance of the fluorine-implanted alloys has been evaluated by thermal gravimetric analysis (TGA) over the temperature range of 750° to 1050°C under conditions of both isothermal and thermal cyclic oxidation in air, and for times as long as 6000 h. This type of surface modification has been shown to produce a stable, adherent and highly protective alumina scale. The second technique involves the fabrication of a durable protective coating in a two-step process, namely formation of a thin aluminum-rich TiAl layer (Ti-60Al) by chemical vapor deposition (CVD) employing a mixture of inorganic precursors, followed by PIII of fluorine. Subsequent long-term oxidation exposures to air at 900°C of a GE 4822 alloy (Ti-48Al-2Cr-2Nb; alloy composition qualified for aerospace applications) have shown that the coating so developed is able to successfully prevent oxidation damage to the base material while maintaining up to 90% of its initial mechanical properties (strength and ductility)

    >

    No full text

    Overpressurized bubbles versus voids formed in helium implanted annealed silicon

    Get PDF
    The formation of helium induced cavities in silicon is studied as a function of implant energy (10 and 40 keV) and dose (131015, 131016, and 531016 cm22). Specimens are analyzed after annealing (800 °C, 10 min) by transmission electron microscopy (TEM) and elastic recoil detection (ERD). Cavity nucleation and growth phenomena are discussed in terms of three different regimes depending on the implanted He content. For the low (131015 cm22) and high (531016 cm22) doses our results are consistent with the information in the literature. However, at the medium dose (131016 cm22), contrary to the gas release calculations which predict the formation of empty cavities, ERD analysis shows that a measurable fraction of the implanted He is still present in the annealed samples. In this case TEM analyses reveal that the cavities are surrounded by a strong strain field contrast and dislocation loops are generated. The results obtained are discussed on the basis of an alternative nucleation and growth behavior that allows the formation of bubbles in an overpressurized state irrespective of the competition with the gas release process

    >

    No full text
    corecore