105 research outputs found

    Unusual Regulation of a Leaderless Operon Involved in the Catabolism of Dimethylsulfoniopropionate in Rhodobacter sphaeroides

    Get PDF
    Rhodobacter sphaeroides strain 2.4.1 is a widely studied bacterium that has recently been shown to cleave the abundant marine anti-stress molecule dimethylsulfoniopropionate (DMSP) into acrylate plus gaseous dimethyl sulfide. It does so by using a lyase encoded by dddL, the promoter-distal gene of a three-gene operon, acuR-acuI-dddL. Transcription of the operon was enhanced when cells were pre-grown with the substrate DMSP, but this induction is indirect, and requires the conversion of DMSP to the product acrylate, the bona fide co-inducer. This regulation is mediated by the product of the promoter-proximal gene acuR, a transcriptional regulator in the TetR family. AcuR represses the operon in the absence of acrylate, but this is relieved by the presence of the co-inducer. Another unusual regulatory feature is that the acuR-acuI-dddL mRNA transcript is leaderless, such that acuR lacks a Shine-Dalgarno ribosomal binding site and 5′-UTR, and is translated at a lower level compared to the downstream genes. This regulatory unit may be quite widespread in bacteria, since several other taxonomically diverse lineages have adjacent acuR-like and acuI-like genes; these operons also have no 5′ leader sequences or ribosomal binding sites and their predicted cis-acting regulatory sequences resemble those of R. sphaeroides acuR-acuI-dddL

    The Ruegeria pomeroyi acuI Gene Has a Role in DMSP Catabolism and Resembles yhdH of E. coli and Other Bacteria in Conferring Resistance to Acrylate

    Get PDF
    The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH− mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH− mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide “added protection” for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway

    Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere

    Get PDF
    Oxidation of methanethiol (MT) is a significant step in the sulfur cycle. MT is an intermediate of metabolism of globally significant organosulfur compounds including dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS), which have key roles in marine carbon and sulfur cycling. In aerobic bacteria, MT is degraded by a MT oxidase (MTO). The enzymatic and genetic basis of MT oxidation have remained poorly characterized. Here, we identify for the first time the MTO enzyme and its encoding gene (mtoX) in the DMS-degrading bacterium Hyphomicrobium sp. VS. We show that MTO is a homotetrameric metalloenzyme that requires Cu for enzyme activity. MTO is predicted to be a soluble periplasmic enzyme and a member of a distinct clade of the Selenium-binding protein (SBP56) family for which no function has been reported. Genes orthologous to mtoX exist in many bacteria able to degrade DMS, other one-carbon compounds or DMSP, notably in the marine model organism Ruegeria pomeroyi DSS-3, a member of the Rhodobacteraceae family that is abundant in marine environments. Marker exchange mutagenesis of mtoX disrupted the ability of R. pomeroyi to metabolize MT confirming its function in this DMSP-degrading bacterium. In R. pomeroyi, transcription of mtoX was enhanced by DMSP, methylmercaptopropionate and MT. Rates of MT degradation increased after pre-incubation of the wild-type strain with MT. The detection of mtoX orthologs in diverse bacteria, environmental samples and its abundance in a range of metagenomic data sets point to this enzyme being widely distributed in the environment and having a key role in global sulfur cycling.The ISME Journal advance online publication, 24 October 2017; doi:10.1038/ismej.2017.148

    Quantification of fractional flow reserve based on angiographic image data

    Get PDF
    Coronary angiography provides excellent visualization of coronary arteries, but has limitations in assessing the clinical significance of a coronary stenosis. Fractional flow reserve (FFR) has been shown to be reliable in discerning stenoses responsible for inducible ischemia. The purpose of this study is to validate a technique for FFR quantification using angiographic image data. The study was carried out on 10 anesthetized, closed-chest swine using angioplasty balloon catheters to produce partial occlusion. Angiography based FFR was calculated from an angiographically measured ratio of coronary blood flow to arterial lumen volume. Pressure-based FFR was measured from a ratio of distal coronary pressure to aortic pressure. Pressure-wire measurements of FFR (FFRP) correlated linearly with angiographic volume-derived measurements of FFR (FFRV) according to the equation: FFRP = 0.41 FFRV + 0.52 (P-value < 0.001). The correlation coefficient and standard error of estimate were 0.85 and 0.07, respectively. This is the first study to provide an angiographic method to quantify FFR in swine. Angiographic FFR can potentially provide an assessment of the physiological severity of a coronary stenosis during routine diagnostic cardiac catheterization without a need to cross a stenosis with a pressure-wire

    Coronary microvascular resistance: methods for its quantification in humans

    Get PDF
    Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses

    Measuring Emotional Intelligence Enhances the Psychological Evaluation of Chronic Pain

    Get PDF
    The assessment of emotional factors, in addition to other psychosocial factors, has been recommended as a means of identifying individuals with chronic pain who may not respond to certain pain treatments. Systematic reviews of the evidence regarding the prediction of responsiveness to a treatment called the spinal cord stimulator (SCS) have yielded inconclusive results. Emotional intelligence is a term which refers to the ability to identify and manage emotions in oneself and others and has been shown to be inversely associated with emotional distress and acute pain. This study aims to investigate the relationship between emotional intelligence, chronic pain, and the more established psychosocial factors usually used for SCS evaluations by clinical psychologists in medical settings. A sample of 112 patients with chronic pain on an acute hospital waiting list for SCS procedures in a pain medicine service were recruited. Psychological measures were completed including: a novel measure of emotional intelligence; usual measures of emotional distress and catastrophizing; and a numerical rating scale designed to assess pain intensity, pain-related distress, and interference. As predicted, findings revealed significant associations between most of the measures analyzed and current pain intensity. When entered into a simultaneous regression analysis, emotional intelligence scores remained the only significant predictor of current pain intensity. There are potential clinical, ethical, and organizational implications of emotional intelligence processes partially predicting pain in patients on a waiting list for a medical procedure. These results may offer new insight, understanding, and evaluation targets for clinical psychologists in the field of pain management
    corecore